
1

Low-Rank Plus Sparse Decomposition,
Multi-Chromatic Analysis and Generalized

Likelihood Ratio Test for Ship Weak Detection,
(L+S)-MCA-GLRT

Dr. Filippo Biondi, Member, IEEE

Abstract—The problem of obtaining stable motion estimation
of maritime targets is that sea clutter makes wake structure
detection and reconnaissance difficult. This article reports a
focused study on the detection of ship wakes using the low-rank
plus sparse decomposition (LRSD) combined with the generalized
likelihood ratio test (GLRT) approach. The proposed algorithm
is assisted by multichromatic analysis (MCA) used to whiten non-
Gaussian sea clutter. Chirp subbands are generated for approxi-
mating Gaussianity of the sea clutter. Results are estimated on one
set of COSMO-SkyMed satellite system stripmap data revealing
excellent detection performance with respect to the state-of-the-
art method.

Index Terms—Synthetic Aperture Radar, Low-rank plus sparse
decomposition, Multi chromatic analysis.

I. INTRODUCTION

THIS article explains a novel detection method based on
low-rank plus sparse decomposition (LRSD) algorithm

implemented by Convex Programming (CP) combined with
the generalized likelihood ratio test (GLRT) algorithm to
detect sea wakes useful to retrieve the motion parameters, like
root and velocity of maritime targets sailing over the open
sea. LRSD, GLRT, and multichromatic analysis (MCA) are
combined together, forming the low-rank plus sparse MCA
GLRT ((L+S)-MCA-GLRT) algorithm where details and per-
formance are explained in the methodology and experiments
sections, respectively. Results are processed using only one
patch of synthetic aperture radar (SAR) image representing
a maritime target generating some wakes. In general, the
wakes from surface ships seem to fall principally into four
categories [1], these are: The Kelvin wake, the turbulent wake,
wakes from internal waves, and narrow-V wakes. The problem
for obtaining stable maritime targets motion estimation is
that sea clutter makes difficult wakes structure detection and
reconnaissance. Sea clutter is short-time stationary but long-
time nonstationary, this means that it is locally homogeneous
but globally inhomogeneous [2]. When these two assumptions
do not hold, adaptive detectors suffer from a sharp degradation
in performance [3]. Finding weak moving targets, such as
small boats in sea clutter, requires a long integration time.
The conflict between having long integration time and short
homogeneous range span of sea clutter is the main obstacle
for detecting weak moving targets. To overcome this problem
chirp and Doppler subapertures are used to convert non-
Gaussian sea clutter [4] in a pseudo-Gaussian version. This

SAR processing is performed applying the multichromatic
analysis (MCA) approach where the radar raw data are focused
in multiple subapertures. The total chirp and Doppler bands are
split into multiple overlapped subapertures, the narrower band
raw subproducts are focused in lower resolution with respect
to the original. Before exploiting details of the (L+S)-MCA-
GLRT detector a short revisit of the LRSD, the GLRT and
the MCA will be provided. In this article, the identification of
the abovementioned features is made by performing a precious
chirp subaperture analysis, assisted by LRSD which has been
implemented by compressed sensing (CS). The application
of CS in the radar field is consolidated in [5], where the
technique demonstrates great potential in overcoming major
limitations, in terms of spatial resolution, processing time,
and onboard memory saving. When the CS technique in radar
is used, the sparsity condition is the principal constraint that
has to be overcome. Radar data are sparse when immersed
in appropriate bases. This encourages the seeking of sparse-
inducing transformations based on time-frequency analysis.
Other successful applications of CS applied to the radar field
are also theorized in [6-7]. In [8], following [9], LRSD has
been applied for the first time in the field of maritime surveil-
lance where the separation performance was excellent, under
heavy clutter and also for small or larger maritime targets. Ship
wakes often appear in synthetic aperture radar (SAR). In [10],
a sensitivity analysis of a GLRT-based processor designed
to detect coherent pulse trains in Weibull-distributed clutter-
dominated environment was developed. Results demonstrate
the suitability of the proposed strategy as a means for cir-
cumventing the a priori environmental uncertainty. Pioneering
works performed on MCA [11-12] were made to resolve the
2π ambiguity of the interferometric SAR wrapped phase to
avoid the ill-posed phase unwrapping computational stage. In
[13], a computer simulation model for SAR of ship wakes
for various configuration has been designed to study wake
patterns observed with different SAR performance. The work
showed that high-resolution SAR performs better than lower
resolution in terms of detection performance. The work per-
formed in [14] first described the distinctive features of ship
wakes observed by SAR images. Experiments were performed
using SEASAT and SIR-B radar images. In [15], a computer
simulation of SAR L-band images of surface ship wakes has
been provided. The model used in the simulation accounts for
both the disturbance produced in the water by the moving
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Fig. 1. (L+S)-MCA-GLRT computational scheme.

ship and the influence of the background sea. In [16], a
work focused to estimate the ship beam and its velocity by
processing SAR images of the Kelvin and turbulent wakes
has been proposed. The work implements the fast discrete
RT to estimate the wakes pattern. In [17], a group of Kelvin
wakes is simulated using the Michell theory. The random
sea surface is simulated using the Pierson-Moskowitz type
wave spectrum. The maritime target motion parameters are
estimated using a discrete RT on order to detect the boundaries
of the simulated Kelvin wakes. In [18], an RT-based approach
to the detection of ship wakes in SAR images is reported. The
RT is performed over short line segments, and a linear feature
detection algorithm assisted by RT is developed. Results
demonstrate the robustness of wake detection in presence of
noise. In [19], the authors theorized detection of oil spills
from multipolarization synthetic aperture radar images. In this
article, the combination of CS with matrix completion for
LRSD has been implemented to separate wakes generated by
maritime targets by the rest of the SAR image background.
Such decomposition was performed using robust principal
component analysis to recover the principal components of
a data matrix that were corrupted by missing entries. Results
show excellent separation of the ship wakes with respect to
the background, permitting the successful application of the
Radon transform and the automatic estimation of the motion
parameters.

II. METHODOLOGY

a) LRSD Model Presentation: A SAR sensor, after hav-
ing compressed the RAW radar data in the range-azimuth
directions and after having processed the motion compensation
computational stage, produces a picture consisting of a matrix
M ∈ C. A great interest is decomposing the image in the
following LRC and SC [9]:

M = L + S. (1)

In (1) L is a LR matrix and S is a sparse matrix and
both have arbitrary in-phase (I) and quadrature-phase (Q)
magnitudes. The LRC low-dimensional columns and its row-
space are unknown. The SC number, locations and the I Q

Fig. 2. ROI. (a): original image. (b): LRC. (c): SC.

magnitudes of its non-zero elements are unknown. Considering
a SAR image, it is of great interest to identify activities
that stand out from the background. The result generates
the L, low-dimensional component which easily corresponds
to the stationary background. The SC S is a perturbation
generated by the moving objects that move like sprites over
the background. Given a complex SAR image, having n1 and
n2 range azimuth dimensions, M(I,Q) ∈ Rn1×n2 for both I,
Q components, the following convex optimization problem is
considered [9]:

minimize
A,B

= ||L||∗ + γ||S||`1 , s.t. M = L + S. (2)

Algorithm (2) is also called principal component pursuit
(PCP). In (2), the parameter γ balances the contribution of
the `1-norm term which is relative to the nuclear norm term.
The parameter ||L||∗ =

∑
j σj ( L) is the nuclear norm of

the matrix L defined as the sum of its singular values. The
parameter ||S||`1 =

∑
ij σij | Sij | is the `1-norm of S, defined

as the vector in Rn1×n2 To implement an efficient algorithm
that effectuates the LRSD of the unique M matrix, it is
necessary to suppose that the L matrix is non-sparse and
incoherent with the standard base. In each row and column the
sparse matrix S should not contain a great number of non-zero
elements.

b) Solution of the LRSD problem: The solution to the
main problem can be summarized in the first instance by the
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following singular value decomposition (SVD) formula [9]:

L = (UΣV∗) =
r∑

i=1

σiuiv
∗
i . (3)

In (3), the parameter r is the rank of the matrix L, the
parameters [σ1, σ2, ..., σn] are the singular values and the
matrices U = [u1, u2, ..., ur] and V = [v1, v2, ..., vr] are the
left and right singular vectors. It is evident that problem (3)
is ill-posed. In extremely unfavorable conditions, a convex
optimization solution is highly recommended to be used.
The application of LRSD will produce the L matrix which
represents the back-scattered image and the S matrix. The S
matrix represents the pixel variation that occurs from column
to column. It is necessary to define the standing following an
incoherent condition, having parameter µ [9]:

max
i
||U∗ · ei||2 ≤

µr

n1
, max

i
||V∗ · ei||2 ≤

µr

n2
, (4)

||UV · ei||∞ ≤
√

µr

n1 · n2
.

In (4) the `∞-norm parameter ||M||∞ = maxij |M|ij term
is a long vector and the parameters U∗ and V∗ are the
orthogonal projections PU and PV in the U and V column
spaces respectively. For small values of the parameter µ, the
singular vectors are not sparse. A non negligible problem
emerges when the SC is also the LR and the algorithm presents
difficulty in defining sparsity or incoherence. This condition
will occur if all the non-zero entries of S are located in
a few columns. To avoid these indetermination issues, the
algorithm will assume that the sparsity pattern is uniformly
and randomly selected. However, where the matrix L0 has
n×n dimensionality, obeying (4), and its SCs S0 has a support
set uniformly distributed along all cardinal sets, a constant
parameter c exists, such that, with probability P = 1−cn−10,
the PCP separation algorithm will exactly recover L = L0 and
S = S0 with λ = 1√

n
. It is also assumed that

rank(L0) ≤ ρrnµ−1(log n)−2 and m ≤ ρsn2. (5)

In (5), the parameters ρr and ρs, are positive numerical con-
stants. For general rectangular case, where the dimensionality
of L = L0 is n1 × n2, the algorithm provides exact recovery
for λ = 1√

nmax
[9]. A schematic representation of the dual-

stage algorithm is represented in Fig.1.
c) Multi-chromatic-analysis problem formulation: MCA

split the overall range spectral bandwidth B1 of the SAR image
into multiple sub-bands B1...BN centered at different N car-
rier frequencies. The MCA technique can be used to measure
absolute interferometric angles starting from wrapped interfer-
ometric maps estimated cross-multiplying the corrisponding
masters and slaves sub-look images [11-12]. In the case of
this paper the MCA approach has been used to transform non-
Gaussian sea clutter in its pseudo-Gaussian version.

d) (L+S)-MCA-GLRT: The energy of the maritime target
and the wakes can be modeled considering the covariance
matrix (CM) estimated in H independent looks M1 ∈ CH×H.
In the case of observing only sea clutter the energy collected

Fig. 3. Positive GLRT detection map.

Fig. 4. Positive (L+S)-MCA-GLRT detection map.

by the CM will be lower. The detection problem can be
formulated in terms of following hypothesis test [3]:

H0 = wn = LRC (6)
H1 = SC + wn = LRC + SC = SLC.

This model requires only one ROI because the input data of
the hypothesis H0 is estimated by the LRC. The GLRT test
is repeated for all the chirp sub-aperture images produced for
all the frequencies.

III. EXPERIMENTAL RESULTS

In this work, one stripmap image observed by the COSMO-
SkyMed satellite system has been processed. The SAR image
has a resolution of 3 m in the range and azimuth directions.
Fig. 2 (a) shows the selected ROI, in which one maritime target
(indicated by a red arrow) can be detected, along with the
wakes it produced. The ship is focused delocalized from the
wakes vertex because during the SAR Doppler integration time
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Fig. 5. Negative GLRT detection map.

1

Fig. 6. Negative (L+S)-MCA-GLRT detection map.

1

Fig. 7. GLRT results. (a): Positive GLRT (red) and negative GLRT (blue). (b):
Positive (L+S)-MCA-GLRT (red) and negative (L+S)-MCA-GLRT (blue).

Fig. 8. CDFs at different SNR levels.

Fig. 9. CDFs at different bands.

was observed on non-null relative velocity range component
with respect to the sensor motion. By measuring this gap
distance, it is possible to estimate the velocity component in
the range direction. To estimate the velocity component in
the azimuth direction, the frequency of the transverse waves
needs to be determined. Removing the sea background from
such sparse objects in the image and GLRT can be a suitable
solution to enhance the reconnaissance of a maritime target
and the wakes it produced. The model is found to work in the
present case, and it has not been observed that the algorithm is
robust also when the weather condition changes. The exper-
imental results provide support that the presented algorithm
enhances the tracking capabilities for maritime targets. Fig.
1 shows the computational scheme used to produce all the
results shown in this article. Each computational block (CB) is
labeled by a number. The SLC ROI is produced by CB number
1. This result is given to CB number 2, which is designed
to compute the LRSD. The input of this stage consists of
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one SLC ROI of the SAR image. The L+S decomposition
computational stage applies the LRSD algorithm to separate
the SC from the LRC. The SC ROI map is not used, and only
the LRC inputs the next digital RT computational stage. The
results are based on one study case in which the ROI consists
of a marine target and the generated wake pattern. This
complex environment is extrapolated from the background
sea by applying the LRSD. The results of CB number 2
indicate that the above-explained LRSD algorithm achieved
excellent background subtraction. Fig. 2 (a) represents the
original SAR image. Fig. 2 (b and c) are the LRC and the
SC of the original image, respectively. The MCA analysis is
computed by the computational stages number 3 and number
4. The MCA computational stages were set according to the
following parameters: The stripmap image is focused using
80 MHz of chirp band. The author set the generation of
200 MCA subproducts focused at lower resolution and setting
B1 = 40MHz, B2 = 25MHz, B3 = 10MHz. The multiple
outputs of the MCA computational stages are imputed in
the GLRT CM number 5. The (L+S)-MCA-GLRT results
are compared with the one estimated by the standard GLRT
algorithm. Fig. 3 shows the positive GLRT result and Fig. 4
is the positive (L+S)-MCA-GLRT detection map. Results of
standard GLRT offers high quantity of false alarms at -40 dB
of energy threshold, the (L+S)-MCA-GLRT detection map has
very little false alarms at -80 dB, and the wakes structure is
detected. Fig. 5 and Fig. 6 are the negative GLRT and (L+S)-
MCA-GLRT results, respectively. Results of standard negative
GLRT confirm a high quantity of false alarms at -20 dB and
the (L+S)-MCA-GLRT negative detection map confirms very
little false alarms at -120 dB and the central structure of the
wakes is also detected. Fig. 7 is the particular of the maritime
target (red box of Fig. 3). (L+S)-MCA-GLRT algorithm is
able to detect the target together to the shadow (Fig. 7 (b))
with respect to a noise result estimated by the standard GLRT
depicted in Fig.7 (a). Fig. 8 and Fig. 9 represent the validation
of the (L+S)-MCA-GLRT performance algorithm. The results
are estimated using simulated data where one synthetic target
has been embedded in Rayleigh noise. Fig. 8 is the cumulative
distribution function (CDF) representing the probability of
detection versus signal to noise ratio (SNR). The study found
an improvement of the detection probability increasing the
SNR (Fig.8) and the band chirp sacrificed to generate the MCA
(Fig.9).

IV. CONCLUSIONS

This article explains a novel detection method based on
LRSD algorithm implemented by CP combined with the
GLRT algorithm to detect sea wakes useful to retrieve the
motion parameters, such as root and velocity of maritime tar-
gets sailing over the open sea. LRSD, GLRT, and MCA were
combined together forming the (L+S)-MCA-GLRT algorithm
where results were estimated using only one patch of SAR
image representing a maritime target generating some wakes.
In this article, the combination of CS with matrix completion
for LRSD has been implemented to separate wakes generated
by maritime targets by the rest of the SAR image background.

Such decomposition was performed using robust principal
component analysis to recover the principal components of
a data matrix that were corrupted by missing entries. Results
show excellent separation of the ship wakes with respect to
the background, permitting the successful application of the
Radon transform and the automatic estimation of the motion
parameters. The study found an improvement of the detection
probability increasing the SNR and the band chirp sacrificed
to generate the MCA.
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