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Abstract—We investigate through experiments and simulations
a straightforward modification of frequency modulated CW
(FMCW) LADAR that permits laser ranging at drastically
reduced sampling rate per equivalent total range and acquisition
time via compressed sensing (CS) recovery. Short range precision
is investigated via gridless CS recovery in simulation. We also
demonstrate in experiment that CS can achieve comparable
precision to a Nyquist system in a practical nonlinear FM
LADAR by construction of a suitable sparsifying dictionary.

Index Terms—LADAR, LIDAR, Laser Ranging, Compressed
Sensing

I. INTRODUCTION

Frequency Modulated Continuous Wave (FMCW) LADAR
[1] is a powerful technique for laser ranging that decou-
ples the optical bandwidth (Bo) from the electronic receiver
bandwidth (Be). Optical bandwidths up to several THz have
been demonstrated [2], yielding impressive resolution and
precision without the need for broadband photodetectors (PDs)
and ADCs required by conventional time-of-flight systems.
However, these advantages come at the cost of either total
range or acquisition time. Thus, we present an approach to
FMCW LADAR employing compressed sensing (CS), which
can improve this tradeoff by a factor >200 (i.e., the compres-
sion ratio). We confirm experimentally the system bandwidth,
investigate the expected precision in simulations, and finally
confirm the system performance compared with a Nyquist
system by generalizing the CS sparsifying basis to nonlinear
FM.

II. SYSTEM CONCEPT

The system principle of operation is depicted in Fig. 1. A
fiber-coupled narrow linewidth continuous wave (CW) laser is
swept in frequency ν (i.e., FM) through a window centered at
1550 nm. This laser is split with a fiber coupler and one arm is
directed out to the range through an optical circulator while the
other arm acts as a local oscillator (LO) for the returned signal.
The LO is combined with the range signal and collected onto
a balanced photodetector (PD) after a 2x2 50:50 fiber coupler.
The interference signal then contains a beat note at frequency
fbeat. For the case of conventional linear FM, the sweep rate
or chirping rate (C) yields directly the range estimates from
the beat note: R = cfbeat/(2C) where c is the speed of light
in the medium.
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Fig. 1. (a) System diagram. (b) Linear FMCW LADAR measurement
scheme depicting the relationship between the time to return from the target
td, the optical frequency sweep of bandwidth BO, and the resulting beat
note fbeat. (c) Photograph of experiment. (d) Conceptual operation of the
Compressive FMCW technique introduced here: phase modulation of the
swept LO produces complementary binary intensity modulation of the beat
note, which undergoes subtraction and low-pass filtering (LPF) at the PD
before digitization. (e) Raw modulation sequence (bottom) and chipped beat
note detected with a fast balanced PD (top). (f) Modulation sequence and
signal with slow PD and LPF.

We introduce compression into the system by adding a
lithium niobate electro-optic phase modulator into the LO arm
of the system driven by a 10-Gbit/s pseudorandom binary
sequence (PRBS). This phase modulation is converted to
complementary amplitude modulation after the 2x2 coupler
and the DC component is subtracted at the balanced detector,
which also low-pass filters the modulated signal. In this way,
true +1/ − 1 modulation can be achieved with a positive
optical signal and the system can be treated as a random
demodulator collecting M � N measurements where N is the
Nyquist dimension of the signal [3]–[5]. Figure 1(e) depicts
the intended system operation in experiment. The beat note is

(c) EUSASIP 2018 / CoSeRa 2018

2018 5th International Workshop on Compressed Sensing applied to Radar, Multimodal Sensing, and Imaging (CoSeRa)



0.46 0.465 0.47 0.475 0.48

Frequency (GHz)

-30

-20

-10

0

R
el

at
iv

e 
P

ow
er

 (
dB

)

3680 3720 3760 3800 3840
Range (m)

(a)

(b) Nominal Range (m)

Nominal Range (km)

CS

Nyquist

CS

Nyquist

Fig. 2. (a) Nyquist measurements and CS reconstructions of several targets
throughout the effective measurement bandwidth. (b) Successful reconstruc-
tion of two targets separated by one point on the CS reconstruction grid.

clearly visible on the red signal and correctly weighted +1/−1
by the 10-Gbit/s PRBS waveform in blue. An experimental
low-pass filtered waveform input to the CS reconstruction is
depicted in Fig. 1(f).

III. LINEAR FM

As a proof of concept experiment, we test reconstruction of
signals throughout the experimental bandwidth and compare
with a conventional Nyquist FMCW measurement. The swept
CW laser frequency is sinusoidally FM modulated with a
piezo inside the laser cavity and the interference signal is
measured during only the most linear portion of the sweep.
The 18.75 THz/s instantaneous C of the laser yields a max-
imum range of R = cBE/(2C) = 40 km in air, but this
will be revisited in Section V and we term this “nominal
range” for now. We employ several lengths of fiber to emulate
long free-space target ranges and create beat notes throughout
the maximum 5 GHz electronic reconstruction bandwidth
(Be). The CS system successfully reconstructs single beat
notes throughout Be using orthogonal matching pursuit (OMP)
[6] as well as closely-spaced tones separated by a single
reconstruction grid point (M = 100 and N = 25000), depicted
in Fig. 2.

IV. PRECISION

We investigate in simulations the best achievable precision
per received signal power from the compressive linear FMCW
system. For Be = 5 GHz electronic receiver bandwidth, we
include the dominant physical noise sources: thermal noise
due to the random motion of electrons in the photodetector
load resistance (rL)

σ2
T = (4kBT/rL)Be (1)
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Fig. 3. Range precision convergence for a CS linear FMCW system (100×
compression ratio) using gridless NOMP.

and shot noise due to the Poisson statistics of the photoelectron
generation

σ2
S = 2qIpBe (2)

where q is the electron charge and Ip is the average photocur-
rent (set here to Ip = 2 mA per detector, primarily contributed
by the LO arm). We also incorporate the phase noise of the
laser such that the signal and LO arms share the same Gaussian
random phase fluctuations ∆φ(τ) = φ(t+τ)−φ(τ) [7]. We set
laser linewidth due to these fluctuations to ∆νlw = 100 kHz.
We then perform 100 frequency estimation tests per received
power value at different random beat note frequencies (on a
continuous grid) over a 2.5 µs window and measure the RMS
deviation from the ground truth. Because laser frequency is
tied to time in the FMCW system, the same frequency devia-
tion (δf ) corresponds to different range deviations depending
on the sweep rate δR = c δf/(2C).

To consider the upper limits on the precision of the com-
pressive linear FMCW system, we set the sensing matrix size
to M = 250, N = 25000 and adopt a recent gridless CS
approach known as Newtonized OMP (NOMP) [8], which
iteratively selects sinusoids and then performs Newton re-
finements of the detected sinusoids in order to reconstruct
frequency-sparse signals across a continuum of frequencies.
We note that above a detection threshold the system precision
improves linearly on log-log scale for small range values (e.g.,
1 m) as predicted by the Cramer-Rao lower bound. However,
the effect of the laser phase noise creeps in with increasing
range, degrading the best achievable precision regardless of
SNR. At ranges on the order of 100 m and above the precision
converges above the detection threshold directly to a level
approximately equal to the phase noise and stays there: this
holds either for a Nyquist or compressive approach.

V. NONLINEAR FM

We consider now the case of nonlinear laser FM, focusing
on the practical implementation of the CS LADAR system
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Fig. 4. (a) Spectrogram of a typical beat signal between the sweeping laser
and the reference laser for calibration of the range estimates. (b) MUSIC
estimation of the reference beat note for 1µs intervals, depicting nonlinear
regions along the sweep.

with a free-running commercial laser. We add a 90:10 splitter
to the swept CW laser and heterodyne it with a much narrower
linewidth (specified < 1 kHz) distributed feedback fiber laser
(at frequency νref slightly below the swept laser’s range) acting
as a reference before detection with a fast (> 10 GHz) pho-
todetector. This permits high resolution external measurement
of the swept CW frequency over time. To cover larger optical
bandwidths at lower cost, a fine free spectral range (FSR)
filter or gas cell and slow photodetector can easily replace
this reference laser.

We discover using the external frequency reference that the
swept laser is very nonlinear throughout the majority of the
sweep both at coarse and fine timescales. This occurs under
all of the driving conditions investigated for a fast maximum
sweep rate and high sweep frequency. The conventional equa-
tion for extracting a single range estimate from a swept source
using an external frequency reference is [1]

R =
∆φ

2π

c

2∆ν
(3)

where

∆φ =

∫ tmeas

0

2πfbeat(t)dt (4)

is the accumulated phase of the beat note over the duration of
the measurement tmeas and ∆ν is the length of the optical
frequency sweep. (∆φ/2π can be considered the number
of fringes in the beat note.) However, using the reference
signal to determine ∆ν over windows of time from several
microseconds to nearly the full ∼millisecond sweep duration
produces wildly inaccurate range estimates, biased 10% or
more off of the correct value with very large standard deviation
(Fig. 6(a)). The nonlinearity of the laser sweep is illustrated on
both coarse (ms) and fine (µs) timescales in Fig. 4. Figure 4(a)
depicts a typical spectrogram and (b) depicts a MUSIC [9]
estimate of the reference signal over 1-µs intervals.

To address the nonlinearity of the sweep, we modify the
range estimation for the Nyquist LADAR by incorporating the
measured history xlaser(t) of the downshifted laser frequency
f(t) = ν(t)− νref:

xlaser(t) = a(t) cos[2πf(t)t+ φ]. (5)

Fig. 5. Spectral power for several atoms y(τ) in a typical computed
sparsifying dictionary for the nonlinear FMCW CS system.

For any measurement window t ∈ [0, tmeas], we compute
predicted interference signals

y(t, τ) = LPF{[xlaser(t) + xlaser(t− τ)]2} (6)

where τ is a time shift in the range [0, cBE/(2Cmax)] (Cmax is
the maximum instantaneous chirping rate). LPF is a low-pass
filter function that removes the f(t) + f(t − τ) components
(for the down-chirp) from the predicted signal. The range R =
cτ/2 is then estimated from the measured ymeas(t) when τ is
determined by

max
τ
|Cov[y(t, τ), ymeas(t)]|. (7)

To test the same approach with the CS system, we construct
a dictionary (D) with normalized y(τ) vectors as atoms for
τ ∈ [0, cBE/Cmax] and solve the so-called basis pursuit
denoising problem

min
α∈RN

1

2
||y −ΦDα||22 + λ||α||1 (8)

using SpaRSA [10] (OMP yields nearly identical results)
where Φ is the random +1/ − 1 binary matrix with N =
25000. The locations of the activate elements in α then
correspond directly to the time delay incurred by the signal.
To illustrate the difference between the dictionary atoms and
the discrete Fourier basis it is designed to replace, we plot the
FFT of several of the atoms in a typical D in Fig. 5. It is
clear that the expected beat notes are much better represented
by chirps of varying width and center frequency (depending
on the delay and measured sweeping behavior) than by simple
tones.

We solve this problem independently (M = 100, N =
25000) for 2.5 µs duration windows along a region of the
sweep for a 770 m target range and compare in Fig. 6
with an equivalent measurement by the Nyquist system col-
lected several minutes earlier. Both measurements identify
the correct range window at each point along the sweep and
have comparable standard deviations: 1.25 m for the Nyquist
measurement and 1.6 m for the CS system, but the CS system
collects 250× fewer measurements. Both uncertainties agree
with the estimate δR = c δf/(2C) = 2.15 m taking into
account our measured laser linewidth (over a 500-µs period)
of δf = 244 kHz and the average sweep rate C = 17 THz/s
over the interval in question.
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Fig. 6. Nonlinear FMCW precision measurements for a 770 m target range.
Depicted are “uncorrected” Nyquist measurements using only equations (3)
and (4), corrected Nyquist measurements using equation (7), and CS using
the nonlinear FM approach described in Section V.

VI. CONCLUSION AND OUTLOOK

In conclusion, we have demonstrated the potential of com-
pressive FMCW LADAR, considering both linear and non-
linear FM sweeps. The approach is capable of reconstructing
beat notes throughout a 5-GHz equivalent electronic bandwith
using up to 200× fewer measurements and digitizer band-
width than a Nyquist system. Through continuous grid CS
reconstruction, we demonstrate that the system can match the
precision of Nyquist systems for single target range estimation.
Finally, to consider nonlinear FM, we adapt the sparsifying
basis with external knowledge about the FM sweep, construct-
ing a dictionary of predicted beat notes. This simultaneously
generalizes the sensing problem and mitigates nonidealities in
the laser, affording nearly equivalent precision for large target
ranges between the CS and Nyquist systems.

Future investigations will focus on improving the robustness
and efficiency of the dictionary generation and experimentally
verifying the precision for very small ranges (<100 m) pre-
dicted in Section IV.
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