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Abstract—The micro-Doppler (m-D) effect, commonly appear-
ing in ISAR/SAR radar images, is caused by fast moving reflectors
of the target. This effect can significantly impact the readability
of radar images. Recently, an algorithm for the separation
of the m-D from the target rigid body has been proposed,
based on the short-time Fourier transform (STFT) and the L-
statistics. For cases of targets with noncompensated acceleration,
this approach is modified to use the Local Polynomial Fourier
transform (LPFT). In our recent paper, we have proposed a
simple algorithm for the search of acceleration compensation
parameter in the LPFT (chirp-rate parameter). In this paper we
deal with the reconstruction of the target’s rigid body after the
L-statistics based removal of the micro-Doppler, for the case of
noncompensated target’s motion. The reconstruction is performed
based on compressive sensing and sparse signal processing theory.

Keywords—ISAR, Compressive sensing, DFT, Sparse signals,
Signal reconstruction

I. INTRODUCTION

Radar imaging is an important application field of the time-
frequency (TF) signal analysis [1]- [11]. The presence of fast
rotating or vibrating parts of the target causes the appearance of
the micro-Doppler (m-D) effect [1]- [9]. In order to focus the
radar images and improve the readability [1]- [9], significant
research efforts have been conducted towards the problem of
rigid body and m-D components separation in the received
radar signals. Micro-Doppler signal parts are highly nonsta-
tionary. In the case of rotating and vibrating target reflectors,
it is commonly modeled by sinusoidally frequency modulated
(FM) components. For the compensated acceleration, rigid
body consists of stationary components. The noncompensated
movement of rigid body reflectors is commonly modeled with
linear FM components in the received radar signal [1].

The separation of rigid body from the m-D, based on
the short-time Fourier transform (STFT) and the L-statistics,
has been studied recently. [1]. The state-of-the-art technique
presented in [1] is very efficient, producing highly concentrated
rigid body after the m-D removal. Recently emerging areas of
compressed sensing and sparse signal processing [11]- [18]
also provided techniques for the reconstruction of stationary
rigid body [11], [13]. The reconstruction of noncompensated
rigid body acceleration has been considered in [1], [12].
Therein, the Local Polynomial Fourier Transform (LPFT)
is proposed as the initial TF representation. However, the
application of this representation requires the estimation of the
chirp-rate parameter serving for the movement compensation,
which is a priori unknown [1]. This value cannot be estimated
based on the original signal. Namely, it was shown that the

L-statistics-based approach must be involved in the parameter
search procedure.

Recently, we have proposed a new search procedure for
the acceleration compensation parameter [3]. It is based on
concentration measure [12] of the LPFT, calculated after
applying the L-statistics in each iteration of the algorithm. The
motivation was the high numerical complexity of the direct
search. In this paper, we deal with the reconstruction of the
rigid body with uncompensated acceleration using compressed
sensing (sparse signal processing) techniques in conjunction
with the described parameter search procedure [3].

The background theory is presented in Section II. The
STFT-based rigid body separation algorithm is presented in
Section III. In this Section, the algorithm for the acceleration
compensation parameter is also presented. The rigid body
reconstruction based on sparse signal processing concepts is
described in Section IV. Numerical results are presented in
Section V.

II. BACKGROUND THEORY AND THE SIGNAL MODEL

Consider a continuous wave (CW) radar transmitting sig-
nals in form of N coherent chirps. If the target distance
is denoted by d(t), and c is the speed of light, then the
signal reflected from the target is delayed for td = 2d(t)/c
with respect to the transmitted signal. Standard preprocessing
operations are assumed in the model (such as, for example,
signal demodulation to the baseband) [1].

As it is commonly done in the radar literature [1], aiming
to analyze cross-range nonstationarities in the radar imaging,
only the Doppler part of the received signal of a point target
in the continuous dwell time will be considered

s(t) = �e
j2d(t)!0

c , (1)

where the target reflection coefficient is denoted by �, and !0

is the radar operating frequency. It is assumed that the pulse
repetition time is Tr with Nc samples within each chirp, and
that the coherence integration time (CIT) is Tc = NTr.

The Doppler part of the received signal, corresponding to
the rigid body, can be modeled with complex sinusoids [1].
However, in the noncompensated target acceleration case the
rigid body would induce linear FM components [1]. Targets
usually consist of some fast moving vibrating and rotating
parts. They cause the appearance of additional nonstationary
components in the received signal. These components are
widely known as the the micro-Doppler. Rotating or vibrating
reflectors produce m-D modeled with sinusoidal FM signals.
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For an arbitrary movement of the reflectors, this model is more
complex. For systems of point scatterers, the received signal
is modeled as a sum of individual scatterer responses. The
general model assuming the rigid body consisted of K points,
and m-D caused by D reflectors [1] is given as

s(n) =
KX

i=1

�Bie
jyBin +

DX

i=1

�Rie
jARi sin(!Rin+⇥i), (2)

where n = 0, . . . , N�1, �Bi and �Ri are reflection coefficients
of the rigid body and rotating reflectors, yBi corresponds to
the position of the rigid body reflector, ARi is proportional to
the distance from the rotating reflector to the center of rotation.
Angle frequencies !Ri are proportional to the rotating rate of
the ith m-D reflector. Detailed explanations of the presented
signal model followed by corresponding ISAR/SAR geometry
schemes can be found in [1].

III. THE SEPARATION OF THE RIGID BODY AND
MICRO-DOPPLER

The efficiency of the method for the separation of rigid
body and m-D, presented in [1], is not dependent on the
assumed m-D model, and for arbitrarily highly nonlinear
motion of m-D points excellent results are also expected.
Further, an appropriate sampling of the received signal s(t) is
assumed, and the processing is performed on signal’s discrete
samples s(n). Rigid body components are stationary, but due
to the highly variable frequency content of the m-D, it is
impossible use the classical Fourier transform based analysis
of these signals. Therefore, time-frequency signal analysis
approaches are commonly exploited in this context. The ability
of a transform (time-frequency representation) TFR(n, k) to
concentrate the signal content in the smallest possible number
of transform coefficients with significant values is quantita-
tively determined by concentration measures [12], commonly
obtained by measuring the transformation spread. This idea
comes from counting non-zero values using `0-norm of the
transformation. However, due to its sensitivity, norms of the
form Mp

p
= (

P
n

P
p
|TFR(n, k)

1
p |)p are engaged more

commonly. The most widely used norm is obtained for p = 1.
Being known as `1-norm, it is used in the recent compressive
sensing context [11]. This form of concentration measure
is assumed in this paper. The short-time Fourier transform
(STFT) of the analyzed signal is defined as

STFT (n, k) =
N�1X

m=0

s(m)w(m� n)e�j2⇡mk/N , (3)

where the window function w(m) is used for the localization
of the frequency content. In this STFT form, w(n) 6= 0 for
�M/2  m  M/2�1 and it is zero-padded up to the signal
length N . The original FT concentration can be obtained from
(3) calculating

S(k) =

N�M/2X

n=M/2

STFT (n, k)

=
N�1X

m=0

s(m)

N�M/2X

n=M/2

w(m� n)

�
e�j2⇡mk/N . (4)

As
PN�M/2

n=M/2 w(m � n) ⇡ const holds, the resulting
window it is very close to a rectangular case, as is constant
during the CIT interval, (except for a small transition for
ending M/2 points at both sides). Therefore, (4) can be
considered as the Fourier transform of the analyzed signal, with
concentration close to the Fourier transform calculated with a
full range rectangular window. The m-D can be removed from
the STFT (n, k) sorting its values over time, and removing
a certain percent of highest values. Summing the remaining
points over the frequency, a FT approximation of the rigid
body is obtained.

A. Micro-Doppler removal in the case of stationary rigid body

In the case of a stationary rigid body, the STFT-based
separation of the rigid body and the m-D is done as follows.
For each frequency index k, we denote the corresponding set
of STFT points as

Sk = {STFT (n, k), n = M/2, ..., N �M/2}. (5)

Sorting elements of this set (over the time index), an
ordered set  k is formed, with elements  k(ni) 2 Sk,
ni 2 {M/2, . . . , N�M/2}. These elements, for each k satisfy

| k(n1)|  | k(n2)|  · · ·  | k(nN�M )|. (6)

The L-statistics based separation of the rigid body from the
m-D assumes that NU highest and ND lowest elements are
removed from  k, for each k. It is a column vector of size
M⇥1. If U is the percent of eliminated highest elements, and
D of eliminated lowest elements, then NU = int[(N�M)(1�
U)/100] highest and ND = int[(N �M)(1�D)/100] lowest
elements is removed. Altogether Q = D+U percent of STFT
points is removed. For given k, the set of available positions
is Lk and it is the subset of {n1, n2, . . . , nN�M}. Sets Lk

for each k = 0, . . . ,M � 1 form set NA containing indexes
(ni, ki) of available (retained) time-frequency points. As

S (k) =

N�M/2X

n=M/2

STFT (n, k) =
N�MX

i=1

 k(ni) (7)

obviously holds, then based on on the obtained subset Lk of
{n1, n2, . . . , nN�M}, the L-estimate

SL(k) =
X

n2Lk

STFT (n, k) (8)

can be calculated. It is a simple approach to approximate the
rigid body components, after the m-D is removed. Stationary
rigid body components are, for given frequency, present in
all time instants. On contrary, m-D components’ frequency
is time-dependent. Therefore, summing over time the STFT
points, values belonging to the rigid body peak will be summed
in phase. Therefore, a highly concentrated peak in the FT
domain is produced for each rigid body component. The low
concentrated m-D components remaining after the removal of
Q% of STFT points for each k will be summed up by different
random phases, thus averaging out. A more detailed discussion
of this result is presented in [1].
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B. Noncompensated rigid body acceleration

Accelerating target motion produces linear FM signals
corresponding to the rigid body reflectors [1]. In that case,
in the received radar signal model (2), stationary rigid body
components are replaced with linear FM terms, having an
unknown chirp-rate a. The simplified case of parallel linear
FM components will be considered. The resulting rigid body
becomes non-stationary, and the procedure presented in previ-
ous section would eliminate significant parts of the rigid body.
The LPFT of the following form

LPFT↵(n, k) =

M/2�1X

m=�M/2

s(n+m)w(m)e�j2⇡[ mM k+↵( m
M )2],

can be exploited in order to determine the optimal chirp rate
↵opt = a. As the unknown dechirping parameter cannot be
estimated based on the original signal, L-estimation will be
involved in the following procedure, as described in Section
III-A. The approach is originally presented in [3].

Step 0: Initialize r = N/2 and ↵(0) = 0.
Then, repeat Steps 1-4 until a stopping criterion is met:

Step 1: Calculate:

LPFT↵+(n, k)

=

M/2�1X

m=�M/2

s(n+m)w(m)e�j2⇡[ mM k+(↵+r)( m
M )2],

LPFT↵�(n, k)

=

M/2�1X

m=�M/2

s(n+m)w(m)e�j2⇡[ mM k+(↵�r)( m
M )2],

Step 2: Apply the L-statistics as described in Section III on
both LPFT↵+(n, k) and LPFT↵�(n, k). Starting from given
sets of LPFT points

L±
k
(n) = {LPFT↵±(n, k), n = M/2, ..., N �M/2}

sort the values of these sets over n to obtain new, ordered
sets of elements,  +

k
(ni) 2 L+

k
(n), and  �

k
(nj) 2 L�

k
(n),

ni, nj 2 {M/2, . . . , N � M/2} satisfying, for given k:
| +

k
(n1)|  | +

k
(n2)|  · · ·  | +

k
(nN�M )| and | �

k
(n1)| 

| �
k
(n2)|  · · ·  | �

k
(nN�M )|.

Highest NQ values from  +
k
(ni) and NQ values from

 �
k
(nj) are omitted, where NQ = int[(N �M)(1�Q)/100]

and Q is the percent of omitted values.

Based on the obtained subsets L+
k

and L�
k

of
{n1, n1, . . . , nN�M}, calculate

S+
L
(k) =

X

n2Lk

LPFT↵+(n, k), (9)

S�
L
(k) =

X

n2Lk

LPFT↵�(n, k). (10)

Step 3: Approximate the concentration measure [12] gra-
dient as the difference of the form:

r =
M�1X

k=0

|S+
L
(k)|�

M�1X

k=0

|S�
L
(k)|. (11)

Step 4: Update the parameter in the gradient direction:

↵(l+1) = ↵(l) � µr. (12)

The resulting parameter ↵ is further used to demodulate the
signal and apply the m-D removal and rigid body reconstruc-
tion algorithm presented in Section III. In numerical examples,
step µ = M

NQ
is used. The iteration index is denoted by l.

Detailed analysis of the optimal step value is part of our further
research.
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Fig. 1. Rigid body and m-D separation when the rigid body acceleration is
not compensated. (a) The STFT of the original signal, calculated according
to (3). (b) The STFT of the signal demodulated with suitable ↵ using the
presented algorithm. (c) Sorted values of the original signal. (d) Sorted values
of the STFT shown in subplot (b). (e) FT of the original signal. (f) FT of the
dechirped signal. (g) FT obtained summing lowest 40% of absolute values of
the dechirped signal STFT over time. (h) FT obtained summing lowest 40%
of the dechirped signal STFT over time, using (8).
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Fig. 2. Non-overlapped STFT as the basis for the CS-based rigid body
recontruction. (a) The STFT of the appropriately dechirped signal (using
parameter ↵ produced by the presented searching algorithm), calculated
according to (13). (b) The STFT values sorted over the time index. (c) STFT
of the original rigid body defined in (22). (d) The STFT of the reconstructed
rigid body calculated using (3) over the inverse DFT of coefficients shown in
(e). This signal is modulated with ↵ to form the original rigid body. (e) DFT
coefficients corresponding to the stationary components of the dechirped rigid
body, reconstructed using the presented CS-based approach.

IV. THE RIGID BODY RECONSTRUCTION

Denote the vector containing properly demodulated signal

s↵(n) = s(n)e�j2⇡↵(n/N)2

samples with s↵ = [s↵(0), s↵(1)..., s↵(N � 1)]. If WM is an
M⇥M discrete Fourier transform (DFT) matrix with elements
exp(�j2⇡mk/M), then the STFT of the demodulated signal
(the second form considered in this paper)

STFT↵(n, k) =
N�1X

m=0

s(n+m)w(m)e�j2⇡mk/N (13)

has the following matrix form

STFT↵ =

2

664

WM 0 · · · 0
0 WM · · · 0
...

...
. . .

...
0 0 · · · WM

3

775 s↵

STFT↵= Ws↵ = WW�1
N

S↵, (14)

where S↵ is the vector of DFT coefficients calculated for the
full length signal and for unity rectangular window. Here,
we assume that the STFT↵(n, k) is calculated at points
0, M, 2M, . . . , N � M . All the STFT values are combined
into one vector

STFT↵ = [STFTM (0)T , . . . ,STFTM (N �M)T ]T . (15)

For each considered instant, STFT vectors are

STFTM (n) = [STFT (n, 0), . . . , STFT (n,M � 1)], (16)

calculated as

STFTM (n) = WMs↵(n), (17)

where s↵(n) = [s↵(n), . . . , s↵(n + M � 1)]T . The theory is
easily extended to the overlapped window case.

Observe that relation

STFT↵= Ws↵ = WW�1
N

S↵ (18)

holds. For proper demodulation parameter ↵, DFT vector S↵

is sparse. Additionally, the DFT vector can be expressed as

S↵ = WNW�1. (19)

Let us introduce the notation A = WW�1
N

. Applying
the m-D removal procedure described in Section III-A, only a
subset of non-removed time-frequency points form the vector
of available STFT values, STFTCS . The elements of this
vector are STFT↵(i) = STFT (ni, ki), where (ni, ki) 2 NA,
being the set of retained time-frequency points after the L-
statistics. The available STFT points satisfy

STFTCS = ACSS↵, (20)

where the CS matrix ACS is formed from matrix A omit-
ting the rows corresponding to the eliminated time-frequency
points.

For properly found ↵, DFT vector containing demodulated
rigid body components, now stationary in nature, is sparse.
Vector STFTCS can be interpreted as the vector of available
samples (measurements) in the compressive sensing and sparse
signal processing frameworks. According to the compressive
sensing theory, the rigid body can be reconstructed solving
[11], [13]

min kS↵k1 subject to STFTCS = ACS S↵. (21)

Various approaches can be used to solve this `1-norm
minimization problem. The existence of the solution has been
investigated in [13].

A. Reconstruction algorithm

To solve (21), orthogonal matching pursuit (OMP) algo-
rithm can be used [14]. Based on the available rigid body
points in STFTCS acting as measurements, exact rigid body
coefficients at positions k 2 K are reconstructed. The pseudo-
code of the procedure is given next:

K = ;, yr = STFTCS

for i = 1 : K

S↵ = NAH

CS
yr

k = arg{max
k

|S↵|}

K = K [ {k}
AK = ACS(:,K)

S = (AH

K
AK)�1AH

K
STFTCS

yr = STFTCS �AKS

end
S↵R = S.
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This algorithm is used in numerical examples.

V. NUMERICAL EXAMPLE

Consider the signal defined as

s(n) =
KX

i=1

�Bie
j2⇡[a( n

N )2+bi
n
N ]+j'i

+
DX

i=1

�Rie
jARi sin(!Rin+⇥i)+j2⇡ci n

N +j2⇡di( n
N )2 . (22)

This signal corresponds to a range bin of a radar image. The
first summation is a model of rigid body reflectors with non-
compensated acceleration a. The m-D is modeled with the
second summation. Signal length is N = 1024.

In our numerical example, we consider the rigid body with
K = 4 components. The component parameters are given
next: �Bi = [1, 0.5, 1.5, 1], bi = [125,�125, 245,�255] and
'i = [0, 0,⇡/4,�⇡/3] for i = 1, 2, 3, 4, respectively. The
unknown chirp rate is a = 360. The m-D consists of two
components, D = 2, and the m-D parameters are: �Ri = [7, 5],
⇥i = [0,⇡/2], ARi = [90, 160], !Ri = [2.5, 1.95], ci = [0, 0]
and di = [0, 0], for i = 1, 2, respectively. First, we perform
the L-statistics based separation of rigid body and m-D, using
the procedure described in Section III-A. The demodulation
(dechirp) parameter ↵ = 280 is obtained using the algorithm
presented in Section III-B. The results are presented in Fig.
1. The initial signal STFT, calculated with window length
M = 128 is shown in Fig. 1a, whereas the corresponding
sorted values are given in Fig. 1c. The STFT of the signal
dechirped with optimal ↵ is presented in Fig. 1b. and the
corresponding sorted STFT values are given in Fig. 1d. The FT
of the original signal is presented in Fig. 1e. The STFT-based
rigid body and m-D separation does not produce satisfactory
results, because significant rigid body parts are removed, as
the components are chirps. The FT reconstructed summing
Q = 40% the lowest absolute values of the sorted STFT from
Fig. 1d is shown in Fig. 1g. The FT reconstructed summing
sorted STFT values according to (8) is shown in Fig. 1h. This
example illustrates the fact that the rigid body reconstruction
using (8) produces highly concentrated peaks. However, in this
paper our aim is to improve the results using the compressed
sensing and sparse signal processing framework. The non-
overlapped STFT of the signal s↵(n) dechirped using the
optimal ↵ is shown in Fig 2a. The window length is M = 32.
The L-statistics from Section III-A approach is performed on
this STFT, removing U = 40% time-frequency points with
largest values, and D = 20% of points with lowest values.
After the m-D removal, the problem (21) is solved using the
OMP algorithm presented in Section IV-A. The reconstruction
results are shown in Fig. 2e. To emphasize the accuracy of
the approach, we present the the STFTs of the original rigid
body defined by (22) in Fig. 2c, and the non-compensated rigid
body obtained calculating the STFT of the inverse DFT of
coefficients presented in Fig. 2e, modulated using the optimal
↵.

VI. CONCLUSION

In this paper we consider the separation of rigid body from
m-D in case when target acceleration is not compensated. The

unknown compensation parameter is found using a simple iter-
ative procedure, based on the LPFT. Applying the compressed
sensing (sparse signal reconstruction) concepts, we were able
to reconstruct the rigid body using the OMP algorithm, based
on time-frequency points remaining after the m-D removal.
Our further research is oriented towards the development of
algorithm being able to reconstruct the rigid body components
which have different chirp rate parameters.
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