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Abstract—When in the measurement model Y =
DX + N with an unknown but sparse coefficient

matrix X also the dictionary D is unknown, a

pair (D̂, X̂) can be found minimizing the Euclidean

distance between model and measurements. This

procedure is known as dictionary learning and can

be tackled e.g. with the K-SVD algorithm [1]. In

our paper, we propose an algorithm for the case of

linear constraints for the unknown dictionary, called

Linearly constrained dictionary learning (LCDL). The

dictionary learning problem and the K-SVD algo-

rithm can be modified to a model including an

unknown multiplicative distortion to the measure-

ments which can be evaluated as a linear com-

bination of basis vectors enabling the application

of LCDL. Further we propose a second algorithm

based on blind factorization using ADMiRA (Atomic

Decomposition for Minimum Rank Approximation)

[2] as the most important component. Finally, we

present applications for the removal of phases in

SAR measurements induced by unknown motions of

the carrier as an alternative to well-known autofocus

algorithms like the phase gradient algorithm (PGA)

[3] or the eigenvector method (EM) [4].

I. INTRODUCTION

In this paper, we will address the problem to
recover a sparse representation with respect to a
dictionary D and the sparse coefficient matrix X,
observed by the measurements

Y = diag(e)DX +N (1)

where N is the measurement noise and e is a
multiplicative distortion vector, from which is only
known that it is an element of a certain subspace
E (for a better clarity, in this section we abstain
from enumerating the dimensions).

The columns of Y may be regarded as ’train-
ing signals’ for the estimation ê of e, such that

D̂ = diag(ê)D can serve further for the simpler
problem to recover future sparse coefficient matri-

ces X̃ from the model

Ỹ = D̂X̃+ Ñ. (2)

The problem Eq. (1) may be slightly gener-
alized by assuming that the measurements are
performed via a matrix transformation:

Y = G diag(e)DX +N. (3)

The algorithm proposed in this paper will cover
also this generalization.

Possible strategies to get a solution are either
to minimize the error between measurement and
model under the constraint of a bounded ℓ0-norm
of the coefficient vectors:

Minimize ‖Y − diag(e)DX‖F (4)

subj. to ‖x(q)‖0 ≤ K ∀q ∈ [Q], e ∈ E.

Q here is the number of training signals, and
x(q), q ∈ [Q] are the column vectors of X, or
to bound the measurement error and find an ℓp-
minimum (p = 0 or p = 1):

Minimize ‖X‖p (5)

subj. to ‖Y − diag(e)DX‖F ≤ σ, e ∈ E.

We will concentrate to the first approach.

As mentioned, e is restricted to a subspace E,
i.e. e can be expressed as a linear combination of
basis vectors bl, l ∈ [L]:

e =

L
∑

l=1

βlbl, (6)
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so

D̃ := diag(e)D (7)

=

L
∑

l=1

βldiag(bl)D (8)

=
L
∑

l=1

βlD
[l]. (9)

with D[l] := diagblD. Since the coefficients
βl are unknown, the dictionary D̃ is an unknown
element of a linear subspace of dictionaries D =
span(D[1], . . . ,D[L]) where the spanning set of

dictionaries D[l], l ∈ [L] are generated by the
’mother directory’ D. Consequently, our primary
problem Eq. (1) can be formulated in the error-
minimizing frame as a dictionary learning problem
with a restricted set D of admissible dictionaries:

Find solutions X̂ and
ˆ̃
D ∈ D (10)

minimizing ‖Y − D̃X‖F
subj. to ‖x(q)‖0 ≤ K ∀q ∈ [Q].

This approach will be called in the following
Linearly constrained dictionary learning (LCDL)
while its application to multiplicative distortion
correction is referred to as MDC.

Related problems known from literature are:

Dictionary learning:

Find solutions X̂ and
ˆ̃
D (11)

minimizing ‖Y − D̃X‖F
subj. to ‖x(q)‖0 ≤ K ∀q ∈ [Q].

This problem is solved by the well-known K-
SVD algorithm. The difference to our problem
Eq. (1) is that there are no constraints on the dic-
tionary to be learned. Further, our algorithm differs
in significant parts from the K-SVD algorithm.

A further optimization problem should also be
mentioned in this context:

Blind factorization:

For the model

y = e⊙ x+ n (12)

with where ’⊙’ stands for the element-wise mul-
tiplication.

Find solutions ê and x̂ (13)

minimizing ‖y− e⊙ x‖2
subj. to e ∈ E,x ∈ X.

E and X here are linear subspaces. This problem
is the kernel of blind deconvolution [5], since the
circular convolution in this paper is expressed in

the Fourier domain as element-wise multiplication.
The largest difference to our approach consists in
making no use of sparsity of x.

In section (II) we will introduce an algorithm
for linearly constrained dictionary learning LCDL.
The application to multiplicative distortion com-
pensation MDC is treated in section (III).

The correction of motion errors for synthetic
aperture radar (SAR) and inverse SAR (ISAR) is
an old problem known as autofocus (AF). For a
simple signal model for the corrupted SAR raw
data - separability of range and azimuth process-
ing, only lateral motion errors - well established
AF techniques like the phase gradient algorithm
(PGA) [3] or the eigenvector method (EM) [4]
are available. These methods assume that there
exist ’prominent scatterers’ in the scene. Trans-
lated to the language of compressive sensing, this
is comparable to the sparsity (or compressibility)
of the SAR data. The AF problem can be directly
formulated according to Eq. (1), where e is the
vector of phasors em = exp{jφm},m ∈ M
corrupting the measurements. This application is
addressed in section (IV).

II. LINEARLY CONSTRAINED DICTIONARY

LEARNING

We now return to the LCDL problem and state
the signal model more precisely:

A. Signal model

Let a set of training measurements y(q) ∈
C

M , q = 1, . . . , Q, collected in the M ×Q matrix
Y = (y(1), . . . ,y(Q)) be given following

Y = DX+N (14)

where X = (x(1), . . . ,x(Q)) is the N × Q
matrix of the unknown coefficient column vectors
x(q) ∈ CN , q = 1, . . . , Q, D ∈ D is an unknown
dictionary, constrained to be an element of a set
of admissible dictionaries D, and N is the mea-
surement noise. Further it is assumed, that each
x(q) is K-sparse, i.e. ‖x(q)‖0 ≤ K ∀q ∈ [Q] =
{1, . . . , Q}. We denote by ΩK ⊆ C

N×Q the set
of all X fulfilling the uniform K-sparsity.

B. The optimization task

We regard the following optimization task:

Based on the signal model Eq. (14) estimate D
and X as a solution of the optimization task

(X̂, D̂) = argmin‖Y −DX‖F (15)

subj. to D ∈ D,X ∈ ΩK .

If the set of admissible dictionaries is maximal:
D = C

M×N , the well-known K-SVD algorithm
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[1] (see appendix) solves this optimization task
under certain conditions. Let D[l], l ∈ [L] be a
”dictionary generation system” with M ×N ma-
trix elements D[l], and D the linear span generated
by this system with additional restrictions:

D = {
L
∑

l=1

βlD
[l] : β = (βl, . . . , βL)

T ∈ B}

with

B = {β ∈ CL : ‖β‖2 = 1, arg(
∑

l

βl) = 0}.

The additional restrictions are included to avoid
scaling ambiguities between X and β. Then the
general task Eq. (15) now can be re-formulated as

(X̂, β̂) = argmin‖Y −
L
∑

l=1

βlD
[l]X‖F

subj. to β ∈ B,X ∈ ΩK . (16)

Of course, a unique solution can only exist, if
the generating elements D[l], l ∈ [L] are linearly
independent.
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Fig. 1. Phase transition diagram for LCDL. Measurement
sparsity here is defined as the ratio between the number of
measurements MQ and the number NQ + (L − 1) of freely
selectable coefficients in X and β , scene sparsity as the
number KQ of non-zero coefficients divided by the number
of coefficients NQ. As ’success measure’ the mean value of
the number of correct recoveries of the support indices relative
to the total number KQ. All elements of the quantities D

[l],
β and XK are chosen as i.i.d. complex Gaussian(0,1) random
variables, and the support K is chosen as K-element index set
by random for each q ∈ [Q]. The following quantities were
fixed: N = 50, L = 5, Q = 10 while M and K were varied.
The number of Monte Carlo simulations for each choice was
100.

C. Proposed algorithm

K-SVD follows an approach alternating be-

tween finding a sparse representation X̂ and an

update of the dictionary D̂ for step-wise decreas-
ing the error term in Eq. (11).

Our algorithm will follow a similar way but
with substantial differences. Let the tensor T ∈
C

M×L×N be defined by

T (., l, .) := D[l], l ∈ [L]. (17)

T comprises the dictionary generation system.

Algorithm 1: Linearly constrained dictionary
learning (LCDL)

Input:
- Dictionary generation system T
- Training vectors Y
- Uniform sparsity constraint K
- Maximum number of iterations itmax

Initialization:
it = 0

(A) Perform modified sparse representation

of order K for each y(q)

(B) Calculate common initial estimation β̂

Iteration: repeat
it := it+ 1

(C) Update D̂
(D) Perform orthogonal matching pursuit

(OMP) for each q

(E) Based on the new X̂ update β̂
until it ≥ itmax.

Now the single steps will be explained:

1) (A) Modified sparse representation of order
K: For the model y = Dx + n, ‖x‖0 ≤ K , this
step is performed similar to the matching pursuit
[6] by a greedy algorithm:

r(0) = y,K = ∅
For κ := 1 . . .K

n̂ = argmax
1≤n≤N

‖Pnr
(κ−1)‖2 (18)

with Pn := Dn(D
H
n Dn)

−1DH
n

and Dn := T (., ., n)

Collect ŵ(κ) := (DH
n Dn)

−1DH
n r(κ−1)

K = K ∪ {n̂}

r(κ) = (I−Pn̂)r
(κ−1)

end κ.

At the end of the iteration, K is the estimated
support of x. Note that ŵ(κ) is the result of

ŵ(κ) = argmin
w∈CL

‖r(κ−1) −Dn̂w‖2 (19)

and r(κ) is the remainder after the κth iteration.

2) (B) Common initial estimation β̂: After the
step (A) we have collected QK versions of ŵ(κ,q)

which are arranged as a L×KQ dimensional ma-
trix W. We expect that each column of W is close

to the vector β, multiplied with the amplitude x
(q)
n

with the index n determined by the corresponding
support element, i.e. W should be close to a dyade

W = βξ (20)
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with a 1 × KQ-vector ξ containing the complex
amplitudes. To estimate β, we perform a singular-
value-decomposition:

[UΣVH ] = svd(W). (21)

If the largest singular value σ1 is placed at

index 1, β̂ is taken as a scalar multiple c of the first
column of U, where c is determined by the nor-
malization assumptions ‖β‖2 = 1, arg(

∑

l βl) =
0.

3) (C) Update of D̂: The estimate of the dic-
tionary is updated by

D̂ =

L
∑

l=1

β̂lD
[l] (22)

4) (D) OMP: The orthogonal matching pursuit
of order K (OMP, [7]) is performed for each q.

The result is a new sparse estimation X̂.

5) (E) Update of β̂: For each q, l calculate
Z(q)(:, l) = D[l]x̂(q). Then

β̂ =

(

∑

q

Z(q)HZ(q)

)−1(
∑

q

Z(q)Hy(q)

)

(23)

Afterwards, normalize β̂ with a scalar factor to
fulfill ‖β‖2 = 1, arg(

∑

l βl) = 0.

D. Discussion and simulation results

Unfortunately, we can not give any recov-
ery guarantees in dependence on the choice of
N,M,Q,L and the properties of the matrices. Just
counting the number of unknowns and measure-
ments, we get the necessary condition

MQ ≥ KQ+ L− 1. (24)

Good results can be expected if MQ ≫ KQ+
L− 1, if the dictionaries D[l], l ∈ [L] are linearly
independent and in a certain manner incoherent
with respect to the spiky base.

A Monte Carlo simulations shows the success
rate for some parameter variations, see Fig. 1

III. MULTIPLICATIVE DISTORTION

COMPENSATION

A. Solution with LCDL

As explicated in Eq. (1) till Eq. (9), the multi-
plicative distortion problem can be traced back to
LCDL, when the distortion e can be expressed as
a linear combination of basis vectors b1, . . . ,bL.
The algorithm Alg. 1 can directly be applied to
the data, using D[l] := diag(bl)D as a dictionary

generation system. The estimation β̂ is used for
the recovery of e:

ê =

L
∑

l=1

β̂lbl (25)

and the distortion may be corrected by

Ycor = diag

(

1

ê1
, . . . ,

1

êM

)

Y. (26)

B. Solution with blind factorization

In principle, also blind factorization could be
used for the estimation of e. Eq. (1) can be trans-
formed to

ỹ = diag(ẽ)D̃x̃+ ñ (27)

with ỹ :=







y(1)

...

y(Q)






, x̃ :=







x(1)

...

x(Q)






,
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Fig. 2. Simulation result for the Multiplicative distortion compensation. The central dictionary is composed of independent complex
Gaussian random variables with expectation 0 and variance 1. M = 100, N = 150; The basis for the dictionary generation system
is an M×L partial Fourier matrix for the lowest frequencies, L = 7, and the linear coefficients βl are also i.i.d. complex Gaussian
random variables. The number of probes is Q = 20 and the sparsity is K = 20. The plot on the left shows the history of relative

remaining energy over the iterations, the center plot the history of the correlation between β̂ and β, and the right plot the history

of ‖β − β̂‖2/‖β‖2.
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D̃ = IQ ⊗D and ẽ =







e
...
e






= 1Q ⊗ e where

1Q is the column vector with Q coefficients equal
to one.

If B is a basis for e, then B̃ := 1Q ⊗ B is a
basis for ẽ.

Suppose, ẽ =
∑L

l=1 βlb̃l and x̃ =
∑P

p=1 γpgp

where G = (g1, . . . ,gP ) is a basis for the sub-
space X introduced in Eq. (13).

Then Eq. (27) can be written as a function of
products βlγp:

ỹν =
∑

l,µ,p

b̃νlD̃νµgµp (βlγp) + ñν . (28)

βlγp is the l, pth coefficient of the rank 1 matrix
M = βγT , where β and γ are the column vectors
built from β1, . . . , βL and γ1, . . . , γP .

So it is possible to write ỹ as a linear function
A of the matrix variable M:

ỹ = A(M) + ñ (29)

This kind of transformation is known in the
community as ’lifting’.

The algorithm ADMiRA (Atomic Decomposi-
tion for Minimum Rank Approximation) [2] solves
the following optimization task:

Based on the signal model Eq. (29) estimate M
as a solution of the optimization task

M̂ = argmin‖ỹ −A(M)‖2 (30)

subj, to rank(M) ≤ r.

In our case, ADMiRA may be used to find the

rank-1 matrix M̂ with best fit Eq. (30). β̂ and γ̂

can easily be extracted from M̂ except for a factor
which can be determined by the normalization
requirement for β. All other quantities then can

be deduced from β̂ and γ̂.

This approach to the solution of Eq. (4) needs
a specification of the subspace X . The sparsity of
X, or x̃, respectively, can be considered, if the
support is known. Then as basis vectors gp, p ∈
[P ] the vectors with a one at the position of
a support element, and zero, elsewhere, can be
defined. The support is estimated with OMP or
ℓ1-minimization. We propose the following algo-
rithm:

Algorithm 2: Blind factorization for distortion
estimation under sparsity conditions
Input:

- Measurements ỹ

- Dictionary D̃

- Error basis B̃
- Initial guess for ẽ
- Maximum number of iterations itmax

Iteration: repeat
it := it+ 1

- Estimate support of x̃ with any pursuit
- Build the elementary basis G

for the support elements
- Fill the tensor representing A

according to Eq. (28)
- Apply ADMiRA with r = 1

- Extract β̂ and γ̂ from M̂

- Evaluate ˆ̃e from β̂
until it ≥ itmax.

Simulation results for this approach can be
found in the next section.

IV. APPLICATION TO SAR AF

SAR autofocusing with compressive sensing
methods has been addressed in several papers, as
[8], [9], [10], [11], [10], [12], [13]. The proposed
approaches are different from that of this paper, so
we continue with CDLS and blind factorization.

A. Model for SAR data

We regard range-compressed SAR data in the
variables r (range) and t (slow time) under the as-
sumption that the range curvature can be neglected.
A single point scatterer at range r0 and azimuth-
time t0 induces the approximate signal

s(t, r) = δ(r − r0)c(t − t0, r) (31)

with the azimuth chirp

c(t, r) = D(t, r)exp{−j2k0
√

r2 + (vt)2} (32)

where k0 is the center wave number, v is the plat-
form velocity and D(t, r) describes the influence
of the two-way antenna characteristics. In a small
strip around r = r0 the dependence on r may be
neglected:

c(t) ≈ D(t, r0)exp{−j2k0

√

r20 + (vt)2}. (33)

After discretization a sensing matrix A can be
defined:

amn = c(m∆T − n∆t),m ∈ [M ], n ∈ [N ] (34)

where ∆t defines the spacing of azimuth grid
points in the image and ∆T the measurement
grid spacing. In Fig. 3 a sensing matrix used for
simulation is illustrated. For a fixed range bin the
measurements now can be modeled as

z = Ax+ n. (35)
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Fig. 3. Real part of the sensing matrix. M = 400, N = 800.
Length of chirp: N/2. Coherence of sensing matrix: 0.9.

Because of unknown cross range motions of
the carrier, phase distortions ϕm,m = 1, . . .M are
introduced leading to a multiplicative error term

e = (exp{ϕ1}, . . . , exp{ϕM})t (36)

and the distorted measurements now are

y = diag(e)Ax+ n. (37)

Similar as for the phase gradient algorithm,
Q range cells are selected according to certain
criteria as the minimum variance principle looking
for range cells with minimum variance of the
amplitude along azimuth which prefers dominant
point-like scatterers. In contrary to the phase gra-
dient algorithm we are not reliant to these isolated
scatterers whereas we only demand sparsity.

Now the measurements are modelled in the
form of Eq. (1)

Y = diag(e)AX+N. (38)

Again, e is represented in a basis B and the
quantities D[l] = diag(bl)A build the dictionary
generating system.

For our simulation we generated phases ac-
cording to a random walk:

ω = 0, ϕ(1) = 0.
for m = 2 . . .M
ω := (1− µ)ω + λw(m).
ϕ(m) = ϕ(m) + ω.

w(m),m ∈ [M ] i.i.d. N (0, 1) rd variables.
ϕ := ϕ− ϕ̃, where
ϕ̃ is the best linear fit of ϕ.

A simulated phase random walk and the spec-
trum of the related phasors are depicted in Fig. 4.

B. Choice of the basis

Due to the limited dynamics of the cross range
velocity it suggests itself to use a part of the
Fourier matrix related to the small frequencies
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Fig. 4. Left: example for a simulated random walk for phase
error M = 400, λ = 0.02, µ = 0.005. Right: spectrum of e

(’low pass basis’); However, there is a problem
which directly arises from the physics: a Doppler
shift causes because of the chirp-nature of the
azimuth signal an azimuth displacement without
de-focusing. In our terms, if B denotes the low
pass basis and bν and bµ are two columns of B
for each ξ not to close at the margins of [1, N ] a
ζ can be found with

diag(bν)a
(ξ) ≈ diag(bµ)a

(ζ) (39)

in other words, the representation D̃ =
∑L

l=1 βldiag(bν)A is ambiguous in β.

As a consequence, the function Eq. (18) is
rather flat at its maximum, since in the vicinity
of the maximum a shift in n can be compensated
by another linear combination of basis elements.

We have chosen another way to a represen-
tative basis. According to the above phase gen-
eration scheme many realizations ei, i = 1 : I
were simulated and from the empirical covariance
matrix R = 1

I

∑

i=1 Ieie
H
i the eigenvectors to

the L largest eigenvalues were taken as a basis.
Fig. 5 shows a new generated error phase and its
representation due to the so developed basis.
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Fig. 5. The error phase (blue) and its representation due to
the basis B generated by random (red). M = 400, L = 19

C. Simulation of LCDL applied to SAR AF

Now we introduce some simulation results for
the linearly constrained dictionary learning. Fig. 6
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shows the conventionally compressed azimuth sig-
nal (i.e. w = AHy with and without multiplicative
distortion.

For the application of LCDL of course the
additional information that the amplitudes of the
coefficients of e are always equal to one, should
be used by normalizing the coefficients of ê to one
at each iteration step.

In Fig. 7 all simulated training lines after con-
ventional compression are shown, left without
error correction, right after phase correction via
LCDL.
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Fig. 6. Left: example for a simulated conventionally com-
pressed azimuth signal without error, K = 15. Right: the same
with the above shown phase error
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Fig. 7. All training azimuth lines after conventional com-
pression. Left: Without error correction. Right: After phase
compensation via LCDL

D. Reduction of complexity by matrix transforma-
tion

As indicated in refEqeq:030, the LCDL method
can be applied also if the measurements are lin-
early transformed, i.e. pre-processed:

Z = GY (40)

A possible pre-processing may consist of imaging
by the matched filter: G = AH . Because of the
band-structure of A the response to a scatterer will
be concentrated to an interval around its position,
even if a phase error is present. The probes then
could be truncated around the maxima leading to
a computational mitigation.

E. SAR AF with blind factorization

Also the algorithm 2 (blind factorization) was
tested for SAR AF. Representative results are
illustrated in Fig. 8 and Fig. 9.
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Fig. 8. Left: Compressed signal without phase error. Right:
The same with phase error
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Fig. 9. Left: After phase correction with blind factorization.
Right: Decrease of the reconstruction error during the itera-
tions
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