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Abstract—This paper presents a novel framework for damage
identification in mechanical structures by combining sparse
solutions with an Extended Kalman Filter. Structural damage
can be described by means of a sparse parameter vector, as
damage leads in most cases to a very local stiffness change,
while the other areas remain unchanged. In order to ensure
sparsity of the estimated damage parameter vector the state space
measurement equation is expanded by an additional nonlinear
L1-minimizing observation. This fictive measurement equation
accomplishes stability of the Extended Kalman Filter and leads to
a sparse estimation. For verification, a proof-of-concept example
on a plate structure is presented.

Keywords—L1-minimization, sparse reconstruction, Extended
Kalman Filter, damage identification.

I. I NTRODUCTION

Structural health monitoring (SHM) is a methodology to
ensure a safe operation of mechanical structures and to reduce
life cycle cost by replacing schedule-driven inspections by
Condition-Based Maintenance (CBM). One major task of SHM
systems is the detection and identification of damage in an
early stage of structural damage evolution. An integrated
sensor network is required to measure the structural vibrations
excited either by an artificial or a natural source, e.g. wind
and traffic loads. By means of the integrated sensor system
the effect of the damage on the structural vibration response
can be measured indirectly.

Now, SHM systems need smart data processing algorithms
in order to draw conclusions about the exact cause for the
measured effect. Thus, vibration-based damage identification
can be seen as the inversion of the principle of cause and effect.
This leads to a mathematical inverse problem. If there are
many causes which will lead to the same measurable effect, the
inverse problem is additionally ill-posed. Ill-posednessmeans
that either the existence, the uniqueness or the stability of the
solution is violated.

In the last decades many methods have been developed
and a considerable amount of literature has been published
on the inverse problem of structural damage identification,an
overview on this topic can be found for example in [1]. Dam-
age identification techniques can be classified as frequency
or time domain or time-frequency domain methods. Classical
frequency domain approaches consider the changes of the
natural frequencies, modal damping, mode shapes or frequency

response functions due to damage. As these quantities provide
information on a global level, they are often insensitive tosmall
local structural damage, especially if only lower structural
modes are used. In the medium or higher frequency range
problems may occur to identify these modes since this requires
a very dense sensor network. Time domain approaches seem
to be comfortable, as raw time data can be used directly.

Several time domain approaches have already been pro-
posed, such as least-squares estimation methods [2], [3] or
methods using particular filters [4], [5], [6], [7]. For the latter
the Extended Kalman Filter (EKF) is the most well-known
system parameter estimation method [8], [9], [10]. EKF-based
system parameter identification belongs to the class of model-
based approaches. Here, a reference model of the undamaged
structure is tested against the actual system in each filter
step. In the filter process the state vector of the Kalman
Filter equations is typically augmented [10] or sometimes even
replaced [11] by the system parameter to be estimated. By
making use of the input-output signal an estimation of the
system parameters is obtained in each filter step. Even so the
original Kalman Filter is known as optimal linear filter, EKF-
based damage identification is still facing some challenges, e.g.
high computational effort for complex structures and intrinsic
ill-posedness of the inverse problem [12]. To overcome ill-
posedness usually the damage parameter space is reduced by
considering only damage hot spots or by a drastic increase of
the sensor number. In order to perform damage monitoring on
the whole structure and to keep the required number of sensors
low, a sparsity-constrained Extended Kalman Filter concept is
proposed.

Therefore, a priori information about the damage properties
is used to solve the inverse problem and to obtain meaningful
solutions. For example, cracks can be interpreted as spatial
singularities, which cause only a very local structural stiffness
reduction. Thus, a system parameter vector which describes
the change in structural stiffness has only a few non-zero
elements corresponding to the actual damage location. Sucha
vector is called sparse. In many fields of applied mathematics,
L1-regularizing techniques have been proven to promote such
kind of sparse solutions (e.g. Compressive Sensing [13], [14].
The proposed damage identification method links the concept
of L1-regularization with the Extended Kalman Filter by ex-
panding the measurement equation by an additional nonlinear
L1-minimizing observation.
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The paper is structured as follows: The problem of damage
parameter estimation using a non-linear state-space description
is formulated in section II. In section III the concept of sparse
solution is incorporated in the Extended Kalman filter concept.
Various proof-of-concept simulation studies are carried out in
section IV. Here the functionality of the proposed identifica-
tion method is demonstrated by analyzing different damaged
scenarios on a quadratic aluminum plate structure. A stochastic
validation is performed by means of a Monte Carlo simulation
and the capability of compensating modelling errors is also
shown. Finally, concluding remarks are presented in section V.

II. PROBLEM STATEMENT

In general, the dynamics of a nonlinear, time-varying
structure can be described similar to [15] as:

M (Θk,xk, k) ẍk + g (Θk,xk, ẋk, k) = uk (1)
Θk+1 = Γ (Θk,xk, ẋk, k) (2)

yk = h∗ (Θk,xk, ẋk, k) (3)

Eq. (1) is the nonlinear equation of motion in discrete time
domain tk = k∆t, k ∈ N. M (·) ∈ R

m×m is the mass
matrix and g (·) ∈ R

m the force vector of elastic and
damping forces. These can depend on the nodal displacement
x ∈ R

m, the nodal velocityẋ ∈ R
m and the time stepk. The

damage parameterΘ ∈ R
p describes the change of structural

integrity (loss of stiffness, loss of mass, etc.) by location
and damage extent. For Structural Health Monitoring this is
the parameter which needs to be reconstructed. Moreover,
the damage parameterΘ usually has also influence on the
equation of motion.u ∈ R

m is the vector of the external acting
loads on the structure. The number of degrees of freedom
(DOF) is m. The nonlinear functionΓ (·) ∈ R

p describes
the evolution of the damage parameter in Eq. (2). Eq. (3) is
the measurement equation which links the model quantities
(displacement, velocities and system parameters) with the
output y ∈ R

n of the measurement device by means of the
functionh∗ (·) ∈ R

n. The number of measurements equalsn.

If the structure can be assumed to be linear, the equation
of motion becomes:

M (Θk) ẍk +C (Θk) ẋk +K (Θk)xk = uk (4)

Here, the structural mass matrixM, the structural stiffness
matrix K and the damping matrixC still depend on the
damage parameterΘ.

Mostly the evolution of the damage parametersΘ and
the structural dynamic vibrations occur on two different time
scales. Compared to the structural vibrations, the evolution of
damage is a rather slow process. Thus, the damage parame-
ter Θ seems to remain constant during a short time span of
data acquisition [15].

Now, a state space model can be defined, in which the
unknown damage parameter vector is the state vector. The
evolution of it is modeled by a Gaussian Markov process, also
called random walk process [11]:

Θk+1 = Θk +wk (5)
yk = h (Θk, [U]k ,x0, ẋ0, k) + vk , (6)

where wk ∈ R
p is zero-mean white process noise with

covarianceQk, wk ∼ N (0,Qk). Here, the measurement

equation in Eq. (6) is defined slightly different as above.
Unlike Eq. (3), the output measurement data are obtained
depending on the initial nodal displacement and velocityx0

andẋ0 and vector[U]k = [u1, u2, . . . , uk]
T , which describes

the external load input from the time stepk = 1 to the
current time stepk. So the equation of motion is implicitly
included in the nonlinear measurement equationh (·) ∈ R

n.
vk ∈ R

n represents the measurement noise with covariance
Rk, vk ∼ N (0,Rk). For reasons of clarity and without loss
of generality, in the remainder of this paper it is assumed that
x0 = 0 and ẋ0 = 0.

III. E XTENDED L1-MINIMIZING KALMAN FILTER

In the following, the concept ofL1-minimizing sparse
reconstruction is incorporated into an Extended Kalman Filter
framework. Loffeld et al. were the first to propose anL1-
minimizing Kalman filter approach for solving underdeter-
mined sparse problems [16]. Here, this idea is adopted to
stabilize the Extended Kalman Filter parameter estimation
process for a large damage parameter spacep and a low
number of sensorsn.

Structural damages due to e.g. cracks can often be in-
terpreted as spatial singularities, as they lead to a stiffness
reduction in a very local area of the system rather than a
global stiffness reduction. Thus, it can be assumed that the
unknown damage parameter vectorΘ is sparse. The sparsity
will be considered as a constraint, which will be part of the
state space model as an additional, nonlinear observation.It is
promoted by theL1-norm of the state vector:

ŷk = γk = ‖Θk‖1 =

p
∑

j=1

|Θj,k| (7)

Starting fromγ0 = ‖Θ0‖1 the fictive measurementγk can
now successively be decreased in each time stepk by a scaling
factorα < 1,

γk+1 = α ‖Θk‖1 (8)

The scalar Eq. (7) pushes down theL1-norm of the state vector
and thus leads to a sparse estimation ofΘ. The now obtained
augmented observation vectorỹk reads as follows:

ỹk =

[

yk

γk

]

=

[

h (Θk, [U]k , k)
‖Θk‖1

]

+

[

vk

νk

]

(9)

νk ∈ R reflects the uncertainty of the additionalL1-minimizing
observation equation.

For estimating the states of the now obtained nonlinear
state space model an Extended Kalman Filter is used. The
EKF linearizes the nonlinear model in each time step around
the a posteriori estimated state vector, using a first-order
Taylor series approximation. After linearization the traditional
prediction-correction algorithm of the Kalman Filter can be
applied.

Starting from the initial conditionsΘ̂ 0|0 and P 0|0, a
forecast of the state is made in the prediction step:

Θ̂k|k−1 = Θ̂k−1|k−1 (10)
Pk|k−1 = Pk−1|k−1 +Qk (11)
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In the corrector step the actual measurementsyk and the
fictive measurements̃yk are considered and compared with
the prediction. The residual∆ỹk is weighted by the Kalman
gain matrixKk and added to the prediction̂Θk|k−1:

∆ỹk = ỹk − h
(

Θk|k−1, [U]k , k
)

(12)

Kk = Pk|k−1H
T
k

(

HkPk|k−1H
T
k + R̃k

)−1

(13)

Θ̂k|k = Θ̂k|k−1 +Kk∆ỹk (14)
Pk|k = (I−KkH)Pk|k−1 (15)

For the proposed damage parameter estimation strategy only
the measurement equation is nonlinear and needs to be lin-
earized:

Hk =









∂h(Θk,[U]
k
,k)

∂Θ

∣

∣

∣

∣

Θ=Θ̂ k|k−1

∂‖Θk‖1

∂Θ

∣

∣

∣

Θ=Θ̂ k|k−1









(16)

The derivative ofh (·) with respect toΘ can be either approx-
imated by the finite difference method or determined exactly
by using the system-output sensitivity for linear structures. A
detailed description of the output-sensitivity calculation can be
found e.g. in [17].

The Jacobian matrix of theL1-minimizing constraint

∂ ‖Θ‖1
∂Θ

=
[

∂‖Θ‖
1

∂Θ1

∂‖Θ‖
1

∂Θ2

· · ·
∂‖Θ‖

1

∂Θp

]

, (17)

can be obtained by:

∂ ‖Θ‖1
∂Θj

= sign(Θj) (18)

The determination of the partial derivative in each time step k
is computationally very expensive. In order to save computing
time, this can be performed just in every second or third step.
This also helps to stabilize the filter process in the beginning.

As usually structural damage has no direct impact on the
measurements at the same specific time stepk, it is advisable
to extend the physical measurementyk and to process a bloc
of l physical measurements in each Kalman Filter step:













yk

yk+1

yk+2

...
yk+l













= hl (Θk, [U]k , k, l) + vl
k (19)

By this en bloc processing, the filter is no longer operating in
real time but with a time lagtl = l∆t in the past.

IV. PROOF-OF-CONCEPT

In order to demonstrate the functionality of the proposed
damage identification strategy a proof-of-concept simulation
study is performed. The observed mechanical structure is a
simple square aluminum plate of 1m× 1m edge length and
2mm thickness. It is clamped on all sides. The structural
dynamics of the plate due to external forces are described
by a finite element model. The plate is modeled by 121
quadratic shell elements and 144 nodes (each with 6 degrees
of freedom), see Fig. 1. The employed structural responses

1 m

123456789101112

131415161718192021222324

252627282930313233343536

373839404142434445464748

495051525354555657585960

616263646566676869707172

737475767778798081828384

858687888990919293949596

979899100101102103104105106107108

109110111112113114115116117118119120

121122123124125126127128129130131132

133134135136137138139140141142143144

1
 m

Fig. 1. Node numbering of the finite element plate model; node 31,54, 63,
99 and 101 are acceleration measurement positions; node 67 is the structure
excitation position

are simulated acceleration measurements perpendicular tothe
plate plane. The obtained simulated measurement signals are
low-pass filtered by a cut-off frequency of 200Hz. Thus, for
damage detection only the low frequency content of the time
signals is employed. White Gaussian noise, with a standard
deviation of three percent of the maximum measurement value,
is added to the simulated outputs to imitate real acceleration
measurement data. Throughout all investigations shown in this
paper, only five accelerometers are used.

A widely used approach to introduce structural damage on
a substructure or element level which represents the changes
of the structural stiffness∆K compared to a reference model
K0 is:

∆K =
∑

j

KjΘj (20)

whereKj is the jth substructure or element stiffness matrix,
respectively. By determination of the unknown correction pa-
rametersΘ = [Θ1, Θ2, . . . , Θp] the damage can be localized
and quantified.

A. Single and multiple damage scenarios

In a first simulation study the stiffness of element no. 81
has been decreased by 20%. The plate is excited by an impulse
force load perpendicular to the surface at node no. 67 of known
time history. The obtained simulated acceleration time data
are now used for structural damage identification. Fig. 2 and
Fig. 3 compare the damage parameter estimation results for the
proposed Extended Kalman Filter method with and without
additional L1-minimizing observation. Both figures display
the parameter estimation results at the end of simulation
time. Fig. 2 shows that for all elements the corresponding
damage parameters are close to zero. Except the true damage
parameter is significantly larger. Thus, the damage is localized
and quantified. It is obvious that no clear damage estimation
result can be achieved withoutL1-minimizing observation
(see Fig. 3). Even though the reconstructed damage parameter
error for the damage element no. 81 is not too big, many
more element stiffness changes (reduction and increase) are
identified. On the other hand, it can be clearly distinguished
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Fig. 2. Estimation result withL1-minimizing observation: Damage is
localized and quantified
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Fig. 3. Kalman filter estimation without additionalL1-observation: No clear
damage pattern can be obtained

between damaged and undamaged elements if the additional
observation is used, asL1-minimization promotes this sparse
solution.

In a next step a multiple damage scenario is investigated.
Here the plate structural damage is modelled by a stiffness
reduction of various elements with different amount. Which
means that the damage parameter vector needs to be less sparse
than in the case of a single element stiffness change. Fig. 4
shows the damage identification results at the end of simulation
time for three damaged elements. In this case a clear damage
identification, similar as before is obtained.

B. Monte Carlo simulation

In section IV-A some selected damage identification results
have been shown. However, for a statistical validation a Monte
Carlo simulation is performed. In this study three different
sensor setups (5, 8 or 12 sensors) are compared. For each
setup 5000 trials with different damage scenarios are carried
out. In each of the 5000 trials multiple damages are introduced
in the structure by reducing the stiffness of various elements.
The damage locations are chosen randomly with uniform
distribution over all elements. The damage extent is also a
random parameter with Gaussian distribution (mean value:
25% stiffness reduction; standard deviation: 5%).

The obtained damage localization results are displayed
in Fig. 5. An estimated damage pattern is only defined as
correct if all stiffness-reduced elements have been detected
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Fig. 4. Multiple damage scenarios: three damaged elements no. 37, no. 63
and no. 81
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Fig. 5. Monte Carlo simulation: Influence of the sensor number and the
damage number on localization reliability

correctly. It can be seen that for a larger number of damages
the localization reliability decreases. However, if more sensors
are used this reliability can be improved.

C. Model error compensation

As the proposed damage identification strategy is a model-
based approach, modeling errors will have an impact on the
reconstruction results. For most practical applications there are
some modeling parameters which are subject to uncertainties,
e.g. the global modulus of elasticity, the mass density or the
correct definition of the boundary conditions.

In order to compensate possible modeling errors, such
model parameters can also be integrated in the estimation
process. Thus, the algorithm will fit the unknown model
parameters to the measurement output data. To this end, the
parameter vectorΘ needs to be extended by these model
parameters:

Θ̃ = [Θ1,Θ2,· · · ,Θp,Θ
m
1 ,· · · ,Θm

n ] (21)

Here the firstp values are the damage parameters as previously
defined. The lastn parameters describe now the global model
parameters.

Fig. 6 shows a damage reconstruction result by using an in-
correct structural model. The model used in the reconstruction
process varies from the one, which is employed to create the
measurement data, not only in terms of the structural damage
but also in terms of a modulus of elasticity and mass density.
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Fig. 6. Damage identification by using an incorrect structural model
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Fig. 7. Estimation of initially wrong model parameters (Young’s modulus
and mass density)

The deviation is 7% in mass density and 10% in modulus.
However, a very clear estimation of the damage pattern can be
obtained. The damage elements no. 41 and 85 are identified
correctly and also the damage extend is reconstructed properly.
Additionally, the model parameter mass density and modulus
of elasticity have been identified, as shown in Fig. 7.

V. CONCLUSION

In this contribution a new time domain method for damage
detection has been proposed. The local character of damage
justifies the use of sparse reconstruction strategies for the
ill-posed inverse problem. Sparsity of the estimated state
vector of damage parameters is ensured within the Extended
Kalman Filter by adding a fictive non-linearL1-minimizing
observation.

It has been shown that the proposed reconstruction method
is able to determine the damage location and extent simul-
taneously. In contrast to the Extended Kalman Filter process
without additionalL1-observation a clear damage pattern is
obtained. This was shown for single damage scenarios as
well as for multiple damage events. A statistical validation
has been performed by means of a Monte Carlo simulation.
Considering the damage parameter space of size 121 in the
demonstrated study, the number of sensors using only 5 to 12
accelerometers is significantly lower than the parameter space.
Moreover, modeling error can be compensated by including the
model parameters, which are subject to uncertainties. Besides
the unknown model parameter, this approach can also be
used to reconstruct damage under changing environmental and

operational conditions (EOC), if the EOC sensitive parameters
are also included in the parameter vector.
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