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Abstract—This paper presents a novel framework for damage response functions due to damage. As these quantitiesderovi
identification in mechanical structures by combining sparse information on a global level, they are often insensitiverieall
solutions with an Extended Kalman Filter. Structural damage local structural damage, especially if only lower struatur
can be described by means of a sparse parameter vector, as modes are used. In the medium or higher frequency range
damage leads in most cases to a very local stiffness change, hoplems may occur to identify these modes since this requir

while the other areas remain unchanged. In order to ensure . ;
sparsity of the estimated damage parameter vector the state ape ? Vbery der;set Sb?nsor netwgrk. -gmte domglln ap%r%aCh?f Seer
measurement equation is expanded by an additional nonlinear 0 P& cOmiortable, as raw time data can be used directly.

L,-minimizing observation. This fictive measurement equation
accomplishes stability of the Extended Kalman Filter and leads to
a sparse estimation. For verification, a proof-of-concept exanip
on a plate structure is presented.

Several time domain approaches have already been pro
posed, such as least-squares estimation methods [2], [3] o
methods using particular filters [4], [5], [6], [7]. For thatier
the Extended Kalman Filter (EKF) is the most well-known
Keywords—L,-minimization, sparse reconstruction, Extended system parameter estimation method [8], [9], [10]. EKFehs

Kalman Filter, damage identification. system parameter identification belongs to the class of mode
based approaches. Here, a reference model of the undamage
. INTRODUCTION structure is tested against the actual system in each filter

step. In the filter process the state vector of the Kalman
Filter equations is typically augmented [10] or sometimesne

- . . ) . replaced [11] by the system parameter to be estimated. B
life cycle cost by replacing schedule-driven inspectiorys b mgking uge ]of )t/he inpﬁt-outpﬁt signal an estimation of they

Condition-Based Maintenance (CBM). One major task of SHMgy st parameters is obtained in each filter step. Even so th
systems is the detection and identification of damage in a(%riginal Kalman Filter is known as optimal linear filter, EKF
early stage of structural damage evolution. An integrateqy,geq gamage identification is still facing some challenges
sensor network is required to measure the structural Vst igh computational effort for complex structures and frgit
excited e_ither by an artificial or a n_atural source, e.g. win ll-posedness of the inverse problem [12]. To overcome ill-
and traffic loads. By means of the integrated sensor systeig,seqness ysually the damage parameter space is reduced |
the effect of the damage on the structural vibration respons;sidering only damage hot spots or by a drastic increase of
can be measured indirectly. the sensor number. In order to perform damage monitoring on

Now, SHM systems need smart data processing algorithmi&e whole structure and to keep the required number of sensor
in order to draw conclusions about the exact cause for théw, a sparsity-constrained Extended Kalman Filter cohaep
measured effect. Thus, vibration-based damage ideniificat Proposed.

can be seen as the inversion of the principle of cause anct.effe Therefore. a priori information about the damade prongrtie
This leads to a mathematical inverse problem. If there are ,ap ge prope

many causes which will lead to the same measurable effect, tHsSoluuS{ﬁ)dnéo Ezly(z;g?n'q\éerifaggbgn %gdi;?e?b:g'[z dm::nglng?ijall
inverse problem is additionally ill-posed. Ill-posednessans : PIe, P P

that either the existence, the uniqueness or the stabflitgeo S Ngularities, which cause only a very local structurafrstss
solution is violated. reduction. Thus, a system parameter vector which describes

the change in structural stiffness has only a few non-zero

In the last decades many methods have been develop&tements corresponding to the actual damage location. &uch
and a considerable amount of literature has been publishedkctor is called sparse. In many fields of applied mathematic
on the inverse problem of structural damage identification, L,-regularizing techniques have been proven to promote such
overview on this topic can be found for example in [1]. Dam-kind of sparse solutions (e.g. Compressive Sensing [13], [1
age identification techniques can be classified as frequencyhe proposed damage identification method links the concept
or time domain or time-frequency domain methods. Classicabf L;-regularization with the Extended Kalman Filter by ex-
frequency domain approaches consider the changes of thmanding the measurement equation by an additional nomlinea
natural frequencies, modal damping, mode shapes or freguen L;-minimizing observation.

Structural health monitoring (SHM) is a methodology to
ensure a safe operation of mechanical structures and teeedu
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The paper is structured as follows: The problem of damagequation in Eq. (6) is defined slightly different as above.
parameter estimation using a non-linear state-spaceipiésor  Unlike Eq. (3), the output measurement data are obtained
is formulated in section Il. In section Il the concept of s depending on the initial nodal displacement and velogity
solution is incorporated in the Extended Kalman filter cgiice andx, and vectofU], = [uy, uo, ..., uk]T, which describes
Various proof-of-concept simulation studies are carriatlin ~ the external load input from the time stédp = 1 to the
section IV. Here the functionality of the proposed idengfic current time stept. So the equation of motion is implicitly
tion method is demonstrated by analyzing different damagethcluded in the nonlinear measurement equafiop) € R™.
scenarios on a quadratic aluminum plate structure. A sttitha v, € R™ represents the measurement noise with covariance
validation is performed by means of a Monte Carlo simulationR,,, v, ~ N (0, R;,). For reasons of clarity and without loss
and the capability of compensating modelling errors is als@f generality, in the remainder of this paper it is assumed th
shown. Finally, concluding remarks are presented in sedtio x, =0 andx, = 0.

Il.  PROBLEM STATEMENT [Il. EXTENDED L;-MINIMIZING KALMAN FILTER
In general, the dynamics of a nonlinear, time-varying |n the following, the concept ofL;-minimizing sparse
structure can be described similar to [15] as: reconstruction is incorporated into an Extended KalmateFil
M (O, x5, k) k5 + & (O, Xp, X1, k) = wy, (1) framework. Loffeld et al. were the first to propose &n-

- . minimizing Kalman filter approach for solving underdeter-
Opt1 = E(Gk’x’“”f’“’k) @ mined sparse problems [16]. Here, this idea is adopted to
yi = h" (O, x5, Xy, k) (3)  stabilize the Extended Kalman Filter parameter estimation
Eq. (1) is the nonlinear equation of motion in discrete timeProcess for a large damage parameter spacend a low
domaint, = kAt, k € N. M(-) € R™*™ is the mass number of sensors.

matrix and g(-) € R™ the force vector of elastic and  Stryctural damages due to e.g. cracks can often be in-
damping forces. These can depend on the nodal displacemegtpreted as spatial singularities, as they lead to a etiffn

x € R™, the nodal velocityx € R™ and the time step. The  reduction in a very local area of the system rather than a
damage paramet& € R” describes the change of structural global stiffness reduction. Thus, it can be assumed that the
integrity (loss of stiffness, loss of mass, etc.) by lodatio unknown damage parameter vec®ris sparse. The sparsity
and damage extent. For Structural Health Monitoring this isyill be considered as a constraint, which will be part of the

the parameter which needs to be reconstructed. Moreovestate space model as an additional, nonlinear observatitsn.
the damage paramet® usually has also influence on the promoted by thel,-norm of the state vector:

equation of motionu € R™ is the vector of the external acting
loads on the structure. The number of degrees of freedom
(DOF) is m. The nonlinear functior (-) € R? describes P

the evolution of the damage parameter in Eq. (2). Eq. (3) is Ve = = 1Ok, = > 104 (7)
the measurement equation which links the model quantities j=1

(displacement, velocities and system parameters) with thg

outputy € R™ of the measurement device by means of the tarting from- = [|©of|, the fictive measurement;. can

. now ivel r in h tim lin
functionh* (-) € R™. The number of measurements equals fa?:to?icieis ely be decreased in each time siepa scaling
If the structure can be assumed to be linear, the equation — oo ®)
of motion becomes: Te+1 = @ ||Ok|]y

. . _ The scalar Eq. (7) pushes down the-norm of the state vector
M () %k + C (Ok) %) + K (Ok) xi = uy “) and thus leads to a sparse estimatior®fThe now obtained
Here, the structural mass matri, the structural stiffness augmented observation vectr reads as follows:
matrix K and the damping matridxC still depend on the
damage parameted. o — (Yi| _ [B(O U k)| vk )
Yk V& H@k”1 Vg
Mostly the evolution of the damage paramet@®sand _ N o
the structural dynamic vibrations occur on two differemiai v« € R reflects the uncertainty of the additioniaj-minimizing
scales. Compared to the structural vibrations, the ewniusf ~ Observation equation.
damage is a rather slow process. Thus, the damage parame- gor estimating the states of the now obtained nonlinear
ter © seems to remain constant during a short time span ofate space model an Extended Kalman Filter is used. The
data acquisition [15]. EKF linearizes the nonlinear model in each time step around
Now, a state space model can be defined, in which théhe a posteriori estimated state vector, using a first-order
unknown damage parameter vector is the state vector. ThERYIOr series approximation. After linearization the ftemhal
evolution of it is modeled by a Gaussian Markov process, als®rediction-correction algorithm of the Kalman Filter cas b
called random walk process [11]: applied.

O =0, +wy (5) Starting from the_ initial qonditions@_om and Py, a
vi = h(®y, [U], . xo, %0, k) + v, . (6) forecast of the state is made in the prediction step:

where w;, € RP is zero-mean white process noise with O k-1 = O k151 (10)
covarianceQy, wi ~ N (0,Qg). Here, the measurement Prp—1 =Proqpp—1 + Qr (11)
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In the corrector step the actual measuremepntsand the TR eI
fictive measurements,, are considered and compared with SX(IRS p AT R CART ARV AR TAREARPARE:
the prediction. The residualy; is weighted by the Kalman 3df a8 38 336 3 3 30 o 268 o 28 23]
gain matrixK,, and added to the predictio® klk—1- agf 47 ad 43t ad® a3 42 4 a0® 39 38 37
~ ~ 60 5)(58)(5 56x 55x "53)( 52)( 51)( 50)(4
Ayr=¥r—h (lekfl’ [U]k 7k) 1 (12) 73] 7?" 76¢ 6; 68 67 Zg‘ 63 68 6 62 6? g
K, = Pk‘k_ng (HkP k\k—le + flk) (13) sdf 83° 82 81 80% 79% 78° 77° 78 75 74° 73 -

93 95)( 94)( 93x 92)( 91)( 90)( 89x 88x 87x 86x 85’

I x = € KAy 14
Ok = O -1 + KeAyk (14) 108107106108 104103102 102100 96® 08" o7]
Pyjp = (I - KpH) P ey (15) 120f 119 118* 17 116 15 114 113112 1% 10 109
For the proposed damage parameter estimation strategy only a1 129 128 127 126 125 124 128 122% 21
. . . . A,
the measurement equation is nonlinear and needs to be lin- T T A BT BT e 135 34 1
earized: | |
oh(©;,[U], k) | I'm |
00 . . . .
e = O=0 4, 1 (16) Fig. 1. Node numbering of the finite element plate model; node53163,
91Okl 99 and 101 are acceleration measurement positions; node 6& &rticture
0© 0=06 11 excitation position

The derivative ofh (-) with respect to® can be either approx-

imated by the finite difference method or determined exactlyare simulated acceleration measurements perpendicuthe to
by using the system-output sensitivity for linear struetuirA  plate plane. The obtained simulated measurement signals ar
detailed description of the output-sensitivity calcidatcan be  low-pass filtered by a cut-off frequency of 200Hz. Thus, for
found e.g. in [17]. damage detection only the low frequency content of the time
signals is employed. White Gaussian noise, with a standard
deviation of three percent of the maximum measurement yalue
a21el, [augul IR DHQH 17) is added to the simulated outputs to imitate real acce@rati

The Jacobian matrix of thé;-minimizing constraint

90 961 00 90, measurement data. Throughout all investigations showhisn t
can be obtained by: paper, only five accelerometers are used.
ale|l A widely used approach to introduce structural damage on
———1 =sign(®,) (18)  a substructure or element level which represents the ckange
99, of the structural stiffnes&K compared to a reference model

The determination of the partial derivative in each timgdte Ko is:
is computationally very expensive. In order to save conmguti
time, this can be performed just in every second or third.step

AK =) K, (20)
This also helps to stabilize the filter process in the begigni J

As usually structural damage has no direct impact on thd/Nere K; is the jth substructure or element stiffiness matrix,
measurements at the same specific time &teipis advisable respectively. By determination of the unknown correcti@a p

to extend the physical measuremgntand to process a bloc ran;eter@f;(j[@l, ©2,..., ©,] the damage can be localized
of I physical measurements in each Kalman Filter step: ~ 2nd quantified.

Yk A. Single and multiple damage scenarios
Yk+1 . . . .
Ye+2| — 1! ! In a first simulation study the stiffness of element no. 81
: b (O, [Uly . k. 1) + vi (19) has been decreased by 20%. The plate is excited by an impuls
: force load perpendicular to the surface at node no. 67 of know
Ykt time history. The obtained simulated acceleration timeadat
By this en bloc processing, the filter is no longer operating in &€ Now used for structural damage |den§|f|c§t|on. Fig. 2 and
real time but with a time lag, = IAt in the past. Fig. 3 compare the damage parameter estimation resultiseor t

proposed Extended Kalman Filter method with and without
additional L,-minimizing observation. Both figures display
the parameter estimation results at the end of simulation
In order to demonstrate the functionality of the proposedime. Fig. 2 shows that for all elements the corresponding
damage identification strategy a proof-of-concept sinmiat damage parameters are close to zero. Except the true damac
study is performed. The observed mechanical structure is parameter is significantly larger. Thus, the damage is ipedl
simple square aluminum plate of xlm edge length and and quantified. It is obvious that no clear damage estimation
2mm thickness. It is clamped on all sides. The structuratesult can be achieved without;-minimizing observation
dynamics of the plate due to external forces are describefsee Fig. 3). Even though the reconstructed damage panamete
by a finite element model. The plate is modeled by 12lerror for the damage element no. 81 is not too big, many
quadratic shell elements and 144 nodes (each with 6 degreesore element stiffness changes (reduction and increase) ar
of freedom), see Fig. 1. The employed structural responséadentified. On the other hand, it can be clearly distinguishe

IV. PROOFOF-CONCEPT
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Fig. 3. Kalman filter estimation without addition&h -observation: No clear ~ Fig. 5. Monte Carlo simulation: Influence of the sensor numbet the
damage pattern can be obtained damage number on localization reliability

between damaged and undamaged elements if the additiorg@rectly. It can be seen that for a larger number of damages
observation is used, ak;-minimization promotes this sparse the localization reliability decreases. However, if moeasors
solution. are used this reliability can be improved.

In a next step a multiple damage scenario is investigatedc
Here the plate structural damage is modelled by a stiffness’
reduction of various elements with different amount. Which  As the proposed damage identification strategy is a model-
means that the damage parameter vector needs to be less spdrgsed approach, modeling errors will have an impact on the
than in the case of a single element stiffness change. Fig. #econstruction results. For most practical applicatitrese are
shows the damage identification results at the end of sifbnlat some modeling parameters which are subject to uncertgjntie
time for three damaged elements. In this case a clear damageg. the global modulus of elasticity, the mass density er th
identification, similar as before is obtained. correct definition of the boundary conditions.

Model error compensation

In order to compensate possible modeling errors, such
model parameters can also be integrated in the estimation
In section IV-A some selected damage identification result®rocess. Thus, the algorithm will fit the unknown model
have been shown. However, for a statistical validation atlon Parameters to the measurement output data. To this end, the
Carlo simulation is performed. In this study three diffdren Parameter vectol® needs to be extended by these model
sensor setups (5, 8 or 12 sensors) are compared. For eaframeters:

setup 5000 trials with different damage scenarios are ezhrri 5 m.. . om

out. II:)n each of the 5000 trials multiple damages are intreduc © = [01,02,-+.0,,07" - .63 (1)

in the structure by reducing the stiffness of various elaésien Here the firsip values are the damage parameters as previously
The damage locations are chosen randomly with uniforndefined. The last parameters describe now the global model
distribution over all elements. The damage extent is also @arameters.

random parameter with Gaussian distribution (mean value:
25% stiffness reduction; standard deviation: 5%).

B. Monte Carlo simulation

Fig. 6 shows a damage reconstruction result by using an in-
correct structural model. The model used in the reconstnuct
The obtained damage localization results are displayegrocess varies from the one, which is employed to create the
in Fig. 5. An estimated damage pattern is only defined asneasurement data, not only in terms of the structural damage
correct if all stiffness-reduced elements have been dedect but also in terms of a modulus of elasticity and mass density.
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The deviation is 7% in mass density and 10% in modulus.
However, a very clear estimation of the damage pattern can kg,
obtained. The damage elements no. 41 and 85 are identified
correctly and also the damage extend is reconstructed fyope
Additionally, the model parameter mass density and modulus
of elasticity have been identified, as shown in Fig. 7. (12]

V. CONCLUSION

In this contribution a new time domain method for damage[l3]
detection has been proposed. The local character of damage
justifies the use of sparse reconstruction strategies fer thyi4
ill-posed inverse problem. Sparsity of the estimated state
vector of damage parameters is ensured within the Extended
Kalman Filter by adding a fictive non-linedt;-minimizing  [15]
observation.

16

It has been shown that the proposed reconstruction metho[d ]
is able to determine the damage location and extent simul-
taneously. In contrast to the Extended Kalman Filter preces
without additional L;-observation a clear damage pattern is[17]
obtained. This was shown for single damage scenarios as
well as for multiple damage events. A statistical validatio
has been performed by means of a Monte Carlo simulation.
Considering the damage parameter space of size 121 in the
demonstrated study, the number of sensors using only 5 to 12
accelerometers is significantly lower than the parametecesp
Moreover, modeling error can be compensated by includiag th
model parameters, which are subject to uncertainties.dBssi
the unknown model parameter, this approach can also be
used to reconstruct damage under changing environmerdal an

(c) EUSASIP 2018 / CoSeRa 2018

operational conditions (EOC), if the EOC sensitive paramset
are also included in the parameter vector.
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