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Abstract—In many problems high-dimensional discrete signals need to be reconstructed from noisy and often undersampled data,
raising the issue of solving nominally underdetermined noise contaminated systems of equations. The theory of compressed sensing
states (and proves) that such signals can in fact uniquely be reconstructed.
Especially the so-called nullspace property of the overall sensing matrix ensures that the sparse or compressible representation can be
recovered by l1 minimization, which can in fact be realized either by convex optimization approaches, which is the classical way, or
alternatively by estimation theoretic approaches, e.g., by extended linearized Kalman Filters, which is the approach analyzed in this
paper.
In this work, we establish new results on sparse signal recovery via l1 minimization using such a Kalman filter. The main contribution of
the paper is a convergence acceleration schema, which converges to the same solution after the primal-dual algorithm by Chambolle
& Pock.

Index Terms—Compressed Sensing, l1-Minimization, Nullspace Kalman Filter
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1 INTRODUCTION

In this chapter, we propose reconstructing �x as the solution
to the convex optimization problem

�̂x = argmin
�x∈Cn

(�b− A�x)HR−1(�b− A�x) + λ ‖�x‖1 (1)

where A ∈ C
m×n is the sensing or observation matrix,

�b ∈ C
m is the vector of noisy observations, R ∈ C

m×m is
the covariance matrix of the measurement noise which is as
assumed as zero mean circular symmetric Gaussian.
In [1] a selection of algorithms used in compressive sensing
is presented.
For the reconstruction of �x we assume that the underlying
matrix fulfills the null space property [1].
For a linear sensing model, the Kalman filter offers an
optimal estimate of the time-varying state for systems states
that propagate also according to a linear model. We propose
understanding the l1 norm as an additional measurement
of the sparse state vector �x and using an iterative Extended
Linearized Kalman Filter (EKF) to approach an estimate �̂x
in a recursive manner [2], [3], [4].
However the Kalman filter does not directly estimate the
full state vector �x. Rather than that, �x is decomposed into a
particular solution �xp minimizing the data fidelity term of
equation (1) and a nullspace complement �xN ∈ N (A) so
that the second term of equation (1) ‖�x‖1 = ‖�xp + �xN ‖1 is
minimized.
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Conceptually the optimal solution is found as �̂x = �̂xp + �̂xN
where

�̂xp = argmin
�x∈Cn

(�b− A�x)HR−1(�b− A�x) (2)

�̂xN = argmin
�xN∈N (A)

∥∥∥�̂xp + �xN
∥∥∥
1

(3)

It is easily observed that if for any vector �̂xp fulfilling
equation (2) also �̂x = �̂xp + �̂xN fulfill equation (2) since
�̂xN ∈ N (A) and hence A�̂xN = �0.
The algorithm starts from the estimate of �x and estimates,
in each iteration, a difference vector which lives in the
nullspace of A. By adding difference vector the least squares
solution to the system of linear equations of equation (1),
we get an optimal estimate of �x with reduced l1 norm
while fulfilling the constraints A�x = �b in a weighted least
squares sense [5]. First of all, we explain briefly how the
algorithm operates. By performing an LQ decompostition
of the sensing matrix A we generate a basis for the null
space of A which we denoted by EN (A). This null space
of A is a (n − m)-dimensional subspace of C

n. We then
denote the number of iteration by k. In each iteration the
difference vector to be added to the solution is calculated via
its coefficients in the null space basis.The state propagation
model corresponds to a constant state, provided that the
sparse vector to be estimated does not vary along iterations.

The nonlinear measurement model is

y(k) = h
(
�x(k)

)
+ ν(k) = h

(
�̃x+ EN (A)�x

(k)
N

)
+ ν(k)

=
∥∥∥�x(k)

∥∥∥
1
+ ν(k) =

∥∥∥�̃x+ EN (A)�x
(k)
N

∥∥∥
1
+ ν(k)

(4)

where h(·) = ‖·‖1 is the nonlinear measurement function,
which generates the observation y(k) from the current esti-
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Algorithm 1 l1-Minimizing Kalman Filter

1: Initialize: �̃x = A†�b , EN (A) ∈ C
n×(n−m) basis of

N (A), �x
(0)
N = 0, �x(0) = �̃x, ,P+(0) = P0

2: while Δ
∥∥∥�x(k)

∥∥∥
1
> ε do

3: k := k + 1

4: Prediction:

5: Propagate state: �x−(k) := �x+(k−1)

6: Propagate covariance: P−(k) := P+(k−1)

7: Measurement update:

8: Measure: y(k) = γ(k)
∥∥∥�x−(k)

∥∥∥
1

9: Calculate Jacobian: C(k) =

[
x
−(k)
i∣∣∣x−(k)
i

∣∣∣

]�
1≤i≤n

EN (A)

10: Kalman gain:

11: K(k) := P−(k)CH(k)
(

C(k)P−(k)CH(k) + R
)−1

12: Update state: �x+(k)
N = �x

−(k)
N + K(k)

(
y(k) −

∥∥∥�x−(k)
∥∥∥
1

)

13: Update estimate: �x+(k) = �̃x+ EN (A)�x
+(k)
N

14: Update covariance: P+(k) := P−(k) − K(k)C(k)P−(k)

15: end while

mate of the state vector �x(k). Note that, provided that the
measurement matrix A remains constant, so it does N (A)
and its basis EN (A). The kth realization of the observation
noise, with variance R

(k)
ν , is denoted by ν(k) in (4).

The (virtual) scalar measurement noise variance of ν(k)

weights the trust the Kalman filter should put in the new
value of the l1 norm. Increasing Rν to a larger value will
decrease that trust and hence decrease the weight, while
decreasing Rν will increasing the weight of the l1 norm
indirectly corresponding to λ. As pointed out in [5], a
linearization of h(·) is required in order to provide the
Kalman filter with a linear measurement model. To that end,
the partial derivative of h(·) with respect to the state vector
�x(k) is computed, yielding the Jacobian matrix

C =
∂

∂�x
h
(
�̃x+ EN (A)�x

(k)
N

)
=

[
xi

|xi|
]�
1≤i≤n

EN (A) (5)

Note that the value γ(k) = 1 − r(k), with initialized
r(0) ∈ ]0, 1], generates in each iteration step a decrease of
l1 norm in the form of r(k) = (1 − r̂)r(k) with initialized
r̂ ∈ ]0, 1[. In the process r(k) evolves in each iteration step
towards the limit value zero, so that γ(k) → 1 for k → ∞
[5].
Algorithm 1 does not always converge to the l1 norm of
the solution. For small dimensions of A, e.g. n = 64,
almost ”sure” convergence was observed, however, for large
dimensions, e.g. n = 120, not any more. Once γ(k), k → ∞
is too close to 1, the l1 norm does not decrease anymore. It is
not guaranteed that one has already reached the minimal l1
norm by then. Hence �x cannot be exactly reconstructed any
more in that case.

In the next two chapters we present two convergence-
accelerated methods: in the first case the Δ2-basic process
of Aitken and in the second one an extrapolation method
according to Aitken’s delta-squared process.

2 ANALYSIS OF AITKEN’S DELTA-SQUARED PRO-
CESS

The Δ2-basic process of Aitken is a convergence-accelerated
method for iterative staggered solution processes [8]. These
processes are regarded as very robust and efficient. The
method of Aitken is based on a simple idea which is typical
for the acceleration process. If the considered sequence is
similar enough to a geometric sequence, the process leads
to an acceleration of the convergence.
Definition 1. Let uk be a sequence that converges to u. The

sequence ũk converges faster if

lim
k→∞

|ũk − u|
|uk − u| = 0. (6)

The derivation and the proof can be found in [8]. This
definition provides the basis for the following lemma.
Lemma 1. Let uk �= u be a sequence with

lim
k→∞

uk+1 − u

uk − u
= β ∈ [−1, 1[.

Then there is a sequence

ũk = uk − (uk+1 − uk)
2

uk+2 − 2uk+1 + uk
, (7)

so that
lim
k→∞

ũk − u

uk − u
= 0. (8)

The sequence ũk (7) is called Steffensen’s sequence.

The proof and further information of this exposition can be
found in various text books on the subject such as [6],[7],[8].

3 EXTRAPOLATION METHODS ACCORDING TO
AITKEN’S DELTA-SQUARED PROCESS

From a converging sequence uk a new sequence ûk is
constructed with an extrapolation process, which converges
faster than the original sequence uk [7]. Two solution pro-
posals can be generated as

(I) ûk = ωkuk + (1− ωk)uk−1 = uk−1 + ωkΔuk−1,

(II) ûk+1 = uk + ωk(uk+1 − uk) = uk + ωkΔuk,

with Δuk = uk+1 − uk and Δuk−1 = uk − uk−1.
If the sequence uk converges, both extrapolations find the
same solution. From both extrapolations one obtains, pro-
vided that |ûk+1 − ûk| → 0,

Δuk−1 = ωk(Δuk−1 −Δuk).

Hence the relaxation factor is

ωk =
Δuk−1

Δuk−1 −Δuk
(9)

and the accelerated sequence is

ûk+1 = uk + ωkΔuk. (10)
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In (10) the expression Δuk can be substituted by Δuk−1

according to Irons & Tuck [6]. The modified method for the
extrapolation process is:

Method Modified extrapolation method
1: Choose an initial ω0 = 0.
2: for all k = 1, 2, . . . do
3: Solve relaxation factor

ωk =
Δuk−1

Δuk−1 −Δuk

4: Solve accelerated iteration

ûk+1 = uk + ωkΔuk−1 (11)

5: end for

4 ACCELERATED ALGORITHM

The accelerated algorithm 2 is given below and briefly
explained. Note that only the changes with respect to al-
gorithm 1 are given.

Algorithm 2 Accelerated l1-Minimizing Kalman Filter
for all k do

Kalman gain:

K(k) := P−(k)CH(k)
(

C(k)P−(k)CH(k) + Î
(k)

R Î
H(k)

)−1

end for

if k = 2 then
Measure:
ỹ(k) = −r(k)

(∥∥∥�x(k)
∥∥∥
1
+ ω

(∥∥∥�x(k)
∥∥∥
1
−

∥∥∥�x(k−1)
∥∥∥
1

))
else if k = 3 then

Update coefficent: ỹ(k) =
ỹ−(k)ỹ(k−2)−(ỹ(k−1))

2

ỹ−(k)−2ỹ(k−1)+ỹ(k−2)

end if

for all k > 3 do

Update coefficent: r̂+(k) =
r−(k)r(k−2)−(r(k−1))

2

r−(k)−2r(k−1)+r(k−2)

Update coefficent: r(k) =
(
1− r̂+(k)

)
r−(k)

Update coefficent: ỹ(k) =
ỹ−(k)ỹ(k−2)−(ỹ(k−1))

2

ỹ−(k)−2ỹ(k−1)+ỹ(k−2)

end for

The typical formulation of the EKF involves the as-
sumption of an additive measurement noise process. This
assumption is not necessary for the EKF implementation. If
the measurement noise ν is nonadditive that the measure-
ment function h has the following form ‖�x‖1 = h(�x, ν).
The output measurement evolves as a function of the state
and measurement noise. Consequently we have the Jacobi-
matrix Î = ∂h(�x,ν)

∂ν |�x(k) .
Algorithm 2 is started with the initialization by algorithm
1. In the second iteration step the reduced measurement ỹ
is determined using the relaxation parameter ω after the
modified extrapolation methods (11) according to Aitken’s

delta-squared process [6], [7].
In the third iteration step the reduced measurement ỹ is
calculated using Steffensen’s method [8]. From the third
iteration step the coefficient r is obtained via Steffensen’s
method in a converging sequence. Furthermore Steffensen’s
method makes r(k) tend to zero when k → ∞. The value ỹ
converges to a limit value different from zero. The estimate
of �x converges to a fixed point.

5 EXAMPLES

We consider two experimental cases to evaluate the per-
formance of our accelerated algorithm. In the first case the
measurement matrix is of size 80×128. The sparsity is s = 5
and the number of iterations is set to 1000. Figure 1 shows
the decrease of the l1 norm over the number of iterations.
We compare the results of algorithm one with the results of
the accelerated algorithm. We also show the true (exact) l1
norm which should be reached.

After 1000 iterations the accelerated algorithm not only
reaches the true l1 norm, but also achieves a RMSE of 2.1 ·
10−6. This example demonstrates that the vector �x can be
reconstructed very precisely with the accelerated algorithm.
Note that the algorithm 1 does not always converge to the
true l1-norm of the solution. Algorithm 1 may stagnate and
hence not achieve the exact solution �x.

100 200 300 400 500 600 700 800 900 1000
iterations

2

4

6

8

l
1
 norm

exact
Alg. 2
Alg. 1

Fig. 1. The l1 norm of algorithm 1 (in green) does not converge to the
true l1 norm of the solution (in red). The dark line shows the l1 norm
attained by the accelerated algorithm.

In the second case the measurement matrix is of size
160 × 256. The results are shown in Fig. 2 with sparsity
s = 15 and 3000 iterations.

500 1000 1500 2000 2500 3000
iterations

10

20

30

40

50

l
1
 norm

exact
Alg. 2
Alg. 1

Fig. 2. The second case shows the same results as the first case in
Fig. 1

The algorithm 1 in the second case (Fig. 2) does not
converge to the true l1 norm of 3.2714. The start vector �̃x
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had an l1 norm of 8.5469 and after 3000 iterations algo-
rithm 1 delivered a solution with l1 norm equal to 19.6602.
Algorithm 2 was able to achieve an l1 norm of 3.2801 with
RMSE of 1.6 · 10−5 in the same number of iterations.
The examples in fact demonstrate that the vector �x can
be reconstructed with the accelerated algorithm. Not only
the convergence is much faster, but also convergence to the
correct solution has been demonstrated.

6 COMPARISON OF THE ACCELERATED ALGO-
RITHM AND THE PRIMAL-DUAL ALGORITHM FOR l1
MINIMIZATION OF CHAMBOLLE & POCK [9]

For each experiment, an s-sparse signal �x ∈ C
n is generated

at random. Both the real and imaginar parts of each nonzero
complex coefficient are drawn from i.i.d. normal distribu-
tions of zero mean and unit variance, and the resulting �x
is then l2-normalized. We use best complex antipodal spherical
codewords (BCASC) [5] as measurement matrix A ∈ C

m×n

for obtaining the vector of measurements �b ∈ C
m as the

columns of measurement matrix. BCASC are known to
minimize the mutual coherence between the individual
codewords and asymptotical approach the Welch bound [5].
For all experiments the signal length is set to n = 128.
Different experimental cases are considered for different
values of the parameters δ = m/n and ρ = s/m with
0 ≤ δ ≤ 1, 0 ≤ ρ ≤ 1 by means of 32 equally-spaced
discrete steps per parameter. Each pixel of the graphs will
show average values of 8 individual experiments. The per-
formance of the different alternatives is evaluated in terms
of l2 recovery error,

∥∥∥�x− �̂x
∥∥∥
2
. The results are shown into

the Donoho-Tanner graphs of normalized l2 recovery error
in Figs. 3 and 4.
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Fig. 3. Normalized sparse recovery error of an l1-minimizing Kalman
Filter with Aitken-based convergence acceleration

Chambolle & Pock with 250 iterations.
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Chambolle & Pock with 1000 iterations.
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Chambolle & Pock with 1500 iterations.
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Fig. 4. Normalized sparse recovery error of Chambolle & Pock’s primal-
dual algorithm

Furthermore results show that the l1-minimizing
Kalman filter with Aitken-based convergence acceleration
yields the same l1 norm than the primal-dual algorithm for
l1 minimization of A. Chambolle and T. Pock [9].

7 COMPETITION PERFORMANCE COMPARISONS

For the comparison of the performance between the Cham-
bolle & Pock’s algorithm [9] and the l1-minimizing Kalman
filter with Aitken-based convergence acceleration we con-
sider Donoho-Tanner graphs, which are defined in chapter
6 of this paper. Now we compare the recovery time of both
algorithms. The results are shown in the Figs. 5 - 8.

Kalman-Filter with 100 iterations.
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Fig. 5. Recovery time of l1-
minimizing Kalman Filter with
Aitken-based convergence
acceleration after 100 iteration
steps.

Chambolle & Pock with 100 iterations.
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Fig. 6. Recovery time of Chambolle
& Pock’s primal-dual algorithm af-
ter 100 iteration steps.

Kalman-Filter with 1000 iterations.

0.2 0.4 0.6 0.8 1
 (m/n)

0.2

0.4

0.6

0.8

1

 (s
/m

)

0

0.05

0.1

0.15

Fig. 7. Recovery time of l1-
minimizing Kalman Filter with
Aitken-based convergence
acceleration after 1000 iteration
steps.

Chambolle & Pock with 1000 iterations.
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Fig. 8. Recovery time of Chambolle
& Pock’s primal-dual algorithm af-
ter 1000 iteration steps.
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The dark vertical line depicts a border line at δ ≈ 0.61.
On the left side of the dark line, which is shown in
the Donoho-Tanner graphs, the primal-dual algorithm of
Chambolle & Pock yields superior performance in terms of
the recovery time. However on the right side of the dark
vertical line we see that the l1-minimizing Kalman Filter
with Aitken-based convergence acceleration performs faster.
Note that the border of δ only depends on the number of
the rows but it is independent of the number of the iteration
steps.
The larger the dimension of the observation vector, the faster
the sparse signal can be reconstructed by the Kalman filter,
while the other algorithm become slower in the recovery
time. The underlying principle is that the accelerated algo-
rithm operates in the dimensionality (n − m) of the null
space.
Furthermore investigations demonstrate that the accelerated
algorithm is a very stable algorithm. Minor modifications,
e.g. number of sparsity s or number of measurement m
brings about small changes the recovery error. Fig. 9 shows
a smooth color development within the Donoho-Tanner-
graphs of normalized l2 recovery error for the l1-minimizing
Kalman Filter with Aitken-based convergence acceleration.
The primal-dual algorithm of Chambolle & Pock sometimes
shows color speckle indicating that even small changes
in s or m produce comparatively large variations to the
reconstruction errors. The results are demonstrated in Fig.
10.

Kalman-Filter with 100 iterations.
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Fig. 9. Normalized sparse recovery
error of l1-minimizing Kalman Filter
with Aitken-based convergence ac-
celeration

Chambolle & Pock with 100 iterations.
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Fig. 10. Normalized sparse recov-
ery error of Chambolle & Pock’s
primal-dual algorithm

In order to show that the smoothness in Fig. 9 with
respect to Fig. 10 is not only due to the different scales
used in the figures, which is necessary due to the slower
convergence of the Kalman filter, we compute difference
plots along the directions of δ and ρ and compose them in an
l2 fashion to obtain Donoho-Tanner graphs of absolute local
variation of recovery error in ρ − δ domain. The Donoho-
Tanner graphs of local error variation obtained for the l1-
minimizing Kalman filter with Aitken-based convergence
acceleration and the primal-dual algorithm of Chambolle &
Pock are shown in Figs. 11 and 12, respectively. Chambolle
& Pock’s primal-dual algorithm exhibits areas with very low
variations and can be considered locally more stable in these
regions, but our algorithm shows less isolated cases of large
local differences.
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Kalman-Filter with 100 iterations.
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Fig. 11. Numerical differentiation of
normalized sparse recovery error
of l1-minimizing Kalman Filter with
Aitken-based convergence acceler-
ation
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Chambolle & Pock with 100 iterations.
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Fig. 12. Numerical differentiation of
normalized sparse recovery error
by Chambolle & Pock’s primal-dual
algorithm

8 CONCLUSIONS

We have extended previous work on performing con-
strained l1-minimization with a modified extended lin-
earized Kalman filter. The built-in accelerator in algorithm 2
guarantees the reconstruction of �x without knowledge of the
sparsity s. With very low signal dimensionality the results
of both algorithm 1 and 2 do not differ significantly. Only
with increasing dimensionality algorithm 2 converges faster
and to the exact solution of the optimization problem. Note
that the accelerated algorithm does not directly estimate the
l1-norm of the solution.
In particular, the accelerated algorithm converges again
to the same solution as the primal-dual algorithm for l1
minimization by Chambolle & Pock [9].
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