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Abstract—In compressive sensing (CS), signal recoverability
is subject to satisfaction of the Restricted Isometry Property
(RIP). Satisfying the RIP inequality with the tightest possible
constants is related to finding the measurement matrix with the
lowest possible coherence. Furthermore, methods exist that are
able to generate sets of vectors tightly approaching the corre-
sponding theoretical lower bounds on the coherence. Matrices
constructed this way are optimal measurement matrices from a
CS perspective. Nevertheless, the effective advantages of using
these optimal matrices over randomly-generated ones have not
been sufficiently studied in the literature and random matrices
continue being the option of choice in most works on CS.

In this work we compare different types of measurement
matrices, in terms of preservation of l2 distance between sparse
vectors. As expected, minimal-coherence matrices outperform
random matrices in this regard. Furthermore, since the distortion
of l2 distances is minimal and can be tightly bounded, its upper
bound is used to calculate optimal values of the step size in the
Iterative Hard Thresholding (IHT) algorithm. We show that IHT
with properly adapted step size cannot converge any faster than
using an optimal sensing matrix. We back this observation with
simulations, which also show that optimal sensing matrices yield
superior results in terms of l2 reconstruction error. The faster
convergence, together with the absence of an online adjustment
of the IHT step size, yields reductions of the recovery time over
80%.

I. INTRODUCTION

Compressive sensing (CS) theory [1], [2] shows that real-

world signals can often be recovered from a number of mea-

surements that is well below that prescribed by the Shannon

sampling theorem. CS models the sensing process as a linear

system, where the measurements are obtained as linear pro-

jections of the signal, and exploits the sparsity or compressibi-
lity of the latter. Whether the signal can be reconstructed from

the measurements or not directly depends on the properties

of the measurement matrix used as linear projector. More

specifically, it is critical that the linear transform preserves

distances between the sparse signals we deal with up to some

extent. This has been enunciated by means of the well-known

Uniform Uncertainty Principle (UUP) [3] and the Restricted

Isometry Property (RIP) [4].

Finding a measurement matrix satisfying the UUP or the

RIP with the tightest possible constants can be shown to be

related to finding a matrix with the lowest possible inter-

column coherence. Furthermore, approximate methods can be

found in the literature that can generate sets of vectors tightly

approaching the corresponding theoretical lower bounds on

the coherence, eventually with equality [5]. Matrices con-

structed this way are optimal measurement matrices from a

CS perspective. In the real case, sets of vectors approaching

the lower bound on the coherence as much as possible are

known as Best Antipodal Spherical Codes (BASCs) and have

been suggested as suitable CS matrices in [6]. In the complex

case, all possible complex rotations of each vector are to be

taken into account to ensure the construction of an antipodal

code. This increases the computational cost required for con-

structing the codes. Sets of complex vectors achieving minimal

coherence are known as Best Complex Antipodal Spherical
Codes (BCASCs). An approximate method for constructing

BCASCs has been presented in [5] and an accelerated version

of the latter in [7]. Thanks to a dramatic reduction on the

computational complexity of the algorithm, the method in

[7] can construct large close-to-optimal measurement matrices

in a reasonable amount of time. Despite the availability of

construction methods, the effective advantages of using these

optimal matrices over randomly-generated ones have not been

sufficiently studied in the literature and random matrices

continue being the option of choice in most works on CS.

In this work we aim to provide solid evidence of the

actual advantages of using optimal measurement matrices over

random ones. For generality, we work with complex signals

throughout the paper. First we provide a comparison between

the capabilities of different types of measurement matrices

for bounding the distortion of the l2 distance between sparse

vectors. As expected, minimal-coherence matrices widely out-

perform random matrices in this regard. Furthermore, since

the distortion of l2 distances is minimal and can be tightly

bounded, its upper bound is used to calculate theoretically

optimal values of the step size in the Iterative Hard Threshol-

ding (IHT) algorithm. We show that an IHT algorithm with

properly adapted step size cannot converge any faster than

using a BCASC. We conduct thorough simulations that show

both the fastest convergence of IHT when using BCASCs as

sensing matrices and the best global performance in terms

of reconstruction error. We provide Donoho-Tanner graphs

of reconstruction error for the two best-performing matrices,

namely, random Gaussian matrices and BCASCs.
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II. FROM ISOMETRY REQUIREMENTS TO COHERENCE

MINIMIZATION AND BACK

A. A Linear Sensing Model

Differently from the Shannon sampling theorem, which

requires the signal to be bandlimited, CS theory [1], [2], [8],

[9] imposes the more general requirement of the signal being

sparse in some basis or tight frame. Measurements are no

longer equidistant samples, but linear projections of the signal.

In the discrete case, the signal is a vector whose coefficients

may be real or complex, depending on the specific problem

formulation. For generality, let �x ∈ C
n be the discrete signal

we want to recover, in its sparse representation. Then CS

theory states that �x can be exactly recovered from few non-

adaptive linear measurements of the shape

�y = AAA�x (1)

if the sparsity requirement is satisfied and the so-called mea-
surement matrix, AAA ∈ C

m×n is good enough for the sparsity

level of �x ∈ C
n. The great potential of CS lies on the fact

that if such requirements are satisfied, �x ∈ C
n can be exactly

recovered from �y ∈ C
m for m � n, using the sparsity

constraint as a further restriction to the underdetermined

system in Eq. 1. If the sparsity of the signal, s, is known

beforehand, one may try to approach a solution to the system

in Eq. 1 as follows:

�̂x = argmin
�x∈Cn

‖�y −AAA�x‖22 subject to ‖�x‖0 ≤ s, (2)

where the l0 norm is defined as the cardinality of the support

of �x:

‖�x‖0 := lim
p→0

‖�x‖pp = | supp (�x)| (3)

B. From Isometry Requirements to Coherence Minimization

The sparsity of �x ∈ C
n depends on the application and can-

not be arbitrarily reduced. The requirement of AAA being good
enough for an expected s is now the critical point. Probably

the most widely-spread characterization of the goodness of AAA
from a CS perspective is by means of the so-called Restricted
Isometry Property (RIP) [4]. A matrix AAA is said to satisfy the

RIP of order k if there exists a constant δk ∈ (0, 1) such that

(1− δk) ‖�x‖22 ≤ ‖AAA�x‖22 ≤ (1 + δk) ‖�x‖22 , ∀�x ∈ Σk (4)

being δk known as the k-restricted isometry constant and Σk

the subset of Cn containing all k-sparse vectors. Note that the

RIP ensures that AAA is close to an isometry for k-sparse vectors,

i. e., that the transformation preserves their l2 norm to some

extent. Clearly, uniqueness of the solution to Eq. 3 is only

guaranteed if the l2 distances between s-sparse vectors do not

vanish, which requires that AAA satisfies the RIP of order k = 2s,

since differences between s-sparse vectors are, at maximum,

2s-sparse. Furthermore, if AAA satisfies the RIP of order 2s with

δ2s low enough, e. g., δ2s <
√
2 − 1 [10], then successful

signal recovery is guaranteed. The RIP imposes lower and

upper bounds on the ratio ‖AAA�x‖22/ ‖�x‖22 for �x ∈ Σk. For any

specific realization of �x, let Ωk denote its support set and AAAΩk

the matrix obtained by selecting the k columns of AAA indexed

by Ωk. It can be shown that such ratio admits the following

analytical bounds:

λmin

(
AAA∗

Ωk
AAAΩk

) ≤ ‖AAA�x‖22
‖�x‖22

≤ λmax

(
AAA∗

Ωk
AAAΩk

)
. (5)

Consequently, a lower bound on λmin

(
AAA∗

Ωk
AAAΩk

)
and an

upper bound on λmax

(
AAA∗

Ωk
AAAΩk

)
, |Ωk| = k, are also lower

and upper bounds, respectively, on the ratio ‖AAA�x‖22/ ‖�x‖22 for

�x ∈ Σk. This means that the Uniform Uncertainty Principle

(UUP) [3], which requires actually such bounding of the

eigenvalues of AAA∗
Ωk

AAAΩk
, implies the RIP up to appropriate

choice of constants.

The challenge is then constructing AAA, such that the spread

of the eigenvalues of the Gram matrix of the Ωk-restricted

AAA, GΩk
= AAA∗

Ωk
AAAΩk

, is minimal over all possible support

sets Ωk of size k. It has been shown that matrices whose

elements are drawn from Gaussian and Bernoulli distributions

satisfy the RIP [11], but do not yield the desired minimal

eigenvalue spread of GΩk
. Note that the aim is that GΩk

→ Ik,

elementwise:

gi,i → 1, ∀i ≤ k

|gi,j | → 0, ∀i ≤ k, j < i
(6)

The requirement gi,i → 1 can be attained with equality,

since it is a simple normalization matter, meaning that all

columns of AAA should be of unit norm. The second requirement

is related to the coherence between the columns of AAA. Provided

that it is not known beforehand which k indices are contained

in Ωk, it becomes necessary to minimize the worst case
coherence, that is, the largest value of |gi,j |. Formally, this

often called matrix coherence [12] of AAA is defined as

μ (AAA) = max
u<v≤n

|〈�au,�av〉|
‖�au‖2‖�av‖2 (7)

where 〈·, ·〉 denotes (complex) scalar product. Clearly, the

denominator does not play a role if the columns of AAA have

unit norm. The problem is now reduced to finding a matrix AAA
with minimal μ (AAA), formally:

ÂAA = argmin
AAA∈Cm×n

μ (AAA) = argmin
AAA∈Cm×n

max
u<v≤n

|〈�au,�av〉|
‖�au‖2‖�av‖2 . (8)

A set of n unit vectors in C
m attaining minimal coherence

is a Best Complex Antipodal Spherical Code (BCASC) [5].

That is, a BCASC is a solution to Eq. 8 and thus an optimal

CS measurement matrix.
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C. From Coherence Minimization to Isometry Guarantees

Theorem 2 of [13] states that the eigenvalues of a matrix

AAA ∈ C
k×k lie in the union of n discs,

k⋃

i=1

di (ci, ri), centered

at ci = ai,i and with radius ri =
∑

j �=i |ai,j |. Applying the

theorem to GΩk
∈ C

k×k we have the following bounds on its

eigenvalues:

λmin (GΩk
) = λmin

(
AAA∗

Ωk
AAAΩk

) ≥ 1− (k − 1)μ (AAA)

λmax (GΩk
) = λmax

(
AAA∗

Ωk
AAAΩk

) ≤ 1 + (k − 1)μ (AAA) ,
(9)

which may be loose in the general case, but become tighter as

μ (AAA) → μmin (AAA). Theoretical lower bounds on the μmin (AAA)
that can be attained when solving Eq. 8 can be found for any

size of AAA (Eq. (9) of [5]) and both the BCASC construction

method in [5] and its accelerated version in [7] have been

shown to tightly approach them. Note that combining the

inequalities in Eq. 9 with the double inequality in Eq. 5 we

can bound the l2 norm distortion undergone when projecting

k-sparse vectors through AAA, both from below and above, and

exclusively in terms of μ (AAA). More specifically, if the columns

of AAA are of unit norm, one can show that AAA satisfies the RIP

of order k with δk given by:

δk = (k − 1)μ (AAA) , ∀k < 1/μ (AAA) . (10)

III. FAST SIGNAL RECOVERY VIA ITERATIVE HARD

THRESHOLDING

As critical as sensing matrix design is how signals are to

be reconstructed from the measurements. One of the most

attractive classes of recovery algorithms is that of thresholding
algorithms, due to their simplicity and speed. Thresholding

algorithms work iteratively, in a two-step structure in which

first the current estimate of �x is corrected by residual pro-

jection to signal space and then the coefficients of the updated

�x are thresholded to obtain an exactly-sparse estimate. The

simplest algorithm implementing this scheme is the Iterative

Hard Thresholding (IHT) [14], [15], and whose basic structure

is given in Algorithm 1, where the stopping criterion is a

threshold on the residual norm, εtol.

Algorithm 1 Iterative Hard Thresholding (IHT)

Initialize: �r(0) = �y, �x(0) = �0
1: while

(∥∥�r(i)
∥∥
2
> εtol

)
do

2: i := i+ 1
3: Update estimate: �x(i) = Hk

(
�x(i−1) + αAAA∗�r(i−1)

)

4: Update residual: �r(i) = �y −AAA�x(i)

5: end while

The hard thresholding operator in line 3, Hk, preserves the

largest k entries of the input vector and sets the rest to zero.

The input vector is the updated estimate and, if an estimate

of s is known a priori, k = s. The update is controlled by

the step size α. This parameter has a critical effect on the

algorithm, since execution may become too slow if α is too

low, eventually producing stagnation, while divergence may

occur if it is too large. The need for a careful adjustment of α
is one of the main weaknesses of IHT and similar alternatives,

often requiring a manual adjustment for each specific problem.

Alternatively, one can compute the optimal value of α at

each iteration, at the price of increasing the computational

cost per iteration. Supposing that the temporal support of �x,

Ωi = supp
(
�x(i)

)
, does not change from one iteration to the

next, the optimal step size α can be calculated as follows:

α
(i)
opt =

∥∥∥�g(i−1)

Ωk−1

∥∥∥
2

2∥∥∥AAAΩk−1�g
(i−1)

Ωk−1

∥∥∥
2

2

�g(i−1) = AAA∗�r(i−1)

(11)

where (·)Ωi denotes restriction to the vector entries or matrix

columns indexed by Ωi. If supp
(
�x(i)

)
= supp

(
�x(i−1)

)
, then

using the step size α
(i)
opt yields maximal error reduction without

divergence risk.

The update step is not more than a gradient descent (GD)

step aiming to minimize the square reprojection error. The

smallest Lipschitz constant of the gradient of this cost function

is L = 2λmax (AAA
∗AAA). Provided that the update step happens

after a previous k-thresholding step and supposing support

invariance, an estimate of λmax

(
AAA∗

Ωk
AAAΩk

)
can be used to

calculate an analytically optimal IHT step size as follows:

αλmax =
2

L
=

1

λmax

(
AAA∗

Ωk
AAAΩk

) . (12)

If a unique value of αλmax
can be precomputed, there is no

need for computing α
(i)
opt at each iteration i. The suitability of

the constant step size given by Eq. 12 depends on two matters.

On the one hand, the actual variability of λmax

(
AAA∗

Ωk
AAAΩk

)

over all possible realizations of AAA and Ωk subject to |Ωk| = k
for a given k. If this variability is too large, the step size given

by Eq. 12 may become uninformative. On the other hand, the

magnitude of the estimate of λmax

(
AAA∗

Ωk
AAAΩk

)
itself plays a

major role, since large eigenvalue spreads might translate into

overpessimistic step sizes. Fortunately, due to their optimal

coherence, the (eventually Ωk-restricted) Gram matrix of a

BCASC exhibits minimal eigenvalue spread for a given size,

thus leading to the sharpest Lipschitz constant, thus yielding

the largest possible step size in Eq. 12.

IV. SIMULATION RESULTS

In this section we explore the feasibility of using an

analytically-obtained αλmax
as fixed step size in IHT (Algo-

rithm 1) by means of simulations. We consider the following

types of complex sensing matrices:

• Complex Gaussian: both the real and imaginary parts

of each matrix coefficient are drawn from i.i.d. normal

distributions of zero mean and unit variance.

• Complex Bernoulli 0/1: both the real and imaginary parts

of each matrix coefficient are drawn from i.i.d. Bernoulli

distributions with 0.5 success probability.
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• Complex Bernoulli -1/1: similar to the previous, but using

{−1, 1} instead of {0, 1} as binary realization domain.

• BCASC: an approximate BCASC constructed using an

accelerated version of the method in [5].

Matrices of the first three types undergo a subsequent co-

lumnwise normalization, which is not necessary for BCASCs,

as the codewords are of unit norm. Note that the coefficients

of the two matrices arising from Bernoulli distributions are

effectively subject to specific phase restrictions in the complex

plane. Nonzero coefficients of the Bernoulli 0/1 matrices

are phasors with angles in {0, 45◦, 90◦}, while the coeffi-

cients of the Bernoulli -1/1 matrices can only take phases in

{45◦, 135◦, 225◦, 315◦}. In all simulations the signal size is

set to n = 128.

A. Eigenvalues of the Restricted Gram Matrices

In this section we present the results of an empirical statisti-

cal evaluation of the eigenvalues of the Gram matrices GΩk
=

AAA∗
Ωk

AAAΩk
over all feasible values of k for the four matrix types

considered. The mean and standard deviation of λmin (GΩk
)

and λmax (GΩk
) are computed over 103 realizations of each

matrix type. The support sets Ωk are randomly generated for

each matrix realization. Since BCASCs are unique, all their

realizations are identical. Fig. 1 shows the obtained statistics

for four values of δ = m/n ∈ {0.25, 0.50, 0.75, 1}. The

abscissa is ρ = s/m and it is supposed that s is known and

one can set k = s.

Gaussian matrices are not a bad option in terms of eigenva-

lue spread for low δ (Fig. 1a), but its inferiority w.r.t. BCASCs

becomes evident as δ increases. For δ = 1 the BCASC is an

orthonormal basis of Cn and λmin (GΩk
) = λmax (GΩk

) = 1,

∀k (Fig. 1d). In contrast, the curves for the Gaussian matrices

do not experience any improvement with increasing δ, but a

slight degradation. Both Bernoulli alternatives exhibit a large

eigenvalue spread, with linear growth of λmax (GΩk
) with k

and a large slope that also grows with δ.

B. Sparse Signal Recovery

The very low standard deviation from the mean values of

λmin (GΩk
) and λmax (GΩk

) showed in Fig. 1 suggests that

the mean values of λmax (GΩk
) could be directly used in

Eq. 12 for the offline calculus of αλmax , provided that k = s
is known beforehand. We do so and compare the performance

of IHT when the step size is computed online via Eq. 11 and

offline via Eq. 12. Experiments are carried out for different

values of δ = m/n and ρ = s/m, as suggested in [16].

More specifically, we consider a complete evaluation of the

entire δ − ρ plane, i. e., 0 < δ ≤ 1, 0 < ρ ≤ 1. For

each parameter sweep, 32 equally-spaced discrete steps are

considered, yielding 1024 different experimental cases. Each

experimental case is repeated 256 times with different l2-

normalized s-sparse signals and mean and standard deviation

values of the l2 recovery error are recorded. The algorithm is

forced to run 103 iterations in all cases. The resulting Donoho-

Tanner graphs of mean (normalized) l2 recovery error are

given in Fig. 2, both for Gaussian matrices and BCASCs.

The interpretation of the graphs in Fig. 2 is twofold: on

the one hand, IHT performs better with a BCASC than with

a Gaussian matrix as measurement matrix, regardless of how

α is adjusted. On the other hand, when using BCASCs one

can precompute an optimal value of α as prescribed in Eq. 12

without degrading the phase transition in the Donoho-Tanner

graphs (cf. Fig. 2d to Fig. 2c). This is not the case if Gaussian

matrices are used instead (cf. Fig. 2b to Fig. 2a).

Obviously, using a constant step size cannot be any better

than calculating the optimal one at each iteration. For this

reason, the advantage of using BCASCs together with the

step size given by Eq. 12 is not an improvement of the phase

transition in the Donoho-Tanner graphs, but a massive speedup

without degrading it. This speedup is twofold: on the one hand,

the fact that the maximum eigenvalue of GΩk
provides a rather

tight upper bound on the l2 norm distortion allows using it

to compute a tight Lipschitz constant, which can be used to

calculate the maximum allowable step size in the correction

step, yielding the fastest convergence. On the other hand,

using a constant precomputed step avoids the computational

cost of adjusting it at each IHT iteration. In order to give

specific speedup figures, let’s compare the performance of

IHT both using BCASCs and the constant step size from

Eq. 12 (our approach) and using Gaussian matrices with the

optimal step size from Eq. 11 (standard approach). Suppose

we require a (normalized) residual norm of < 10−4, which

means an SNR of 80 dB in measurement space. For the case

of, e. g., δ = 0.75, ρ = 0.25, the standard approach requires

31 iterations to meet the residual norm requirement, while

ours meets the requirement after only 17 iterations, i. e., 45%
less. Furthermore, the iterations of our approach are faster than

those of the standard one. For the selected case the time cost

per iteration is 38% lower. Composing both figures we have

that the proposed approach can reach the same results as the

standard one with a recovery time reduction of 83%.

V. CONCLUSION

The RIP plays a central role in CS. Fulfilling the RIP with

tighter restricted isometry constants translates into the ability

of reconstructing less sparse signals from the same number

of measurements or, complementary, reducing the minimum

number of measurements that are necessary to reconstruct

a signal of given sparsity. We have shown how designing

the best measurement matrices in terms of RIP translates

into the problem of finding a set of vectors with minimal

coherence. We have also recalled how coherence reduction

directly translates into lower restricted isometry constants. We

have pointed out the existence of methods for constructing

such optimal CS measurement matrices both in the real and

complex case and proposed using them to maximally speed

up the IHT algorithm.

For different types of measurement matrices, including

complex Gaussian matrices and BCASCs, we have proposed

using expected values of the maximum eigenvalue of the

Ωk-restricted Gram matrix GΩk
= AAA∗

Ωk
AAAΩk

to analytically

compute a constant step size for IHT. Due to the minimal
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(d) δ = 1

Fig. 1: Solid lines: mean values of the minimum and maximum eigenvalues of the Gram matrix of the Ωk-restricted measurement

matrices, for four different classes of matrices (see legends in (d)) and k = s, against ρ = s/m, for all feasible values of s.

Shaded areas: 6σ-regions, i. e., only 3.4 cases per million fall outside them. The statistics were computed over 103 realizations

of each random matrix and randomly-generated Ωk for each k. Recall that δ = m/n simply regulates the matrix size.
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Fig. 2: Evaluation of the (normalized) l2 recovery error with

respect to δ = m/n and ρ = s/m obtained after 103 IHT

iterations. Each pixel in the plots encodes the mean value

over 256 independent signal realizations. Plots in the first

row are for complex Gaussian matrices, both using optimal

(online adapted) and fixed (based on the expected maximum

eigenvalues of the partial Gram matrix) IHT step sizes, while

plots in the second row are for BCASCs, also in both cases.

eigenvalue spread of the Gram matrices of BCASCs the

precomputed step size is approximately the largest possible.

Simulations have shown that using the constant steps calcula-

ted this way did not yield a visible degradation of the phase

transition in the Donoho-Tanner graphs of l2 recovery error for

the case of BCASCs, while allowing for a massive speedup

of the algorithm. This speed up arises both from eliminating

the online adjustment of the step size and from the fact that

using BCASCs yields the fastest convergence of IHT. Typical

recovery time reductions by a factor of 6 have been registered

w.r.t. using Gaussian matrix with online step size adjustment.
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