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Abstract— Hyperspectral imaging in the infrared spectral 

region makes it possible to identify chemical compounds and, at 

the same time, locate the compound. We provide simulations of 

using coded aperture snapshot spectral imaging (CASSI) to 

reconstruct the hyperspectral information from a single snapshot. 

We study the effect of using a complex scene, scene illumination by 

a black-body radiation, and effect of adding a noise to the synthetic 

datasets. Our results show, that the use of CASSI method with a 

simple binary mask leads to partially satisfactory results for the 

realistic scenes in the sense of determining the chemical compound 

but not for retrieving the quality of reconstructed scene. 

Keywords—hyperspectral imaging; infrared spectrum; coded 

aperture snapshot spectral imaging; compressed sensing 

I.  INTRODUCTION  

Hyperspectral imaging (HSI) denotes all methods where, in 
addition to an image, we obtain a spectrum of light at each point 
of the image. HSI in the infrared (IR) spectral region is of great 
importance, as it can provide us with large amount of 
information about the scene of interest that cannot be obtained 
in any other way. An example can be the remote sensing of 
chemical compounds. For this reason, HSI in the IR has been 
very lively topic in the recent decades. 

A number of studies focuses on HSI in the near-IR spectral 
range, which is accessible for a commonly used optics and Ge- 
or InGaAs-based detectors. However, the so-called mid- and far 
IR (λ > 2.5 µm) region is not widely utilized due to the need to 
use uncommon optical materials and array detectors.  

A possible solution to this problem can be utilization of 
compressed sensing (CS) methods. CS refers to a signal 
processing technique that uses the principle that many natural 
signals are sparse, i.e. can be described by only few components 
in a certain basis. Use of CS for sparse signals makes it possible 
to reconstruct the signals from far fewer measurements than the 
Shannon-Nyquist theorem requires. In other words, it is possible 
to reconstruct signals by finding solutions to underdetermined 
linear systems. For more details we refer reader to [1]. 

In this article we focus on the use of the so-called CASSI 
(Coded Aperture Snapshot Spectral Imaging) method in the IR 
HSI, where sharp spectral absorption peaks superimposed on the 
black body radiation represent a specific type of scenes. 
Moreover, the scene has to be recorded by using an IR detector 
with a high level of a dark noise. The main goal of this article is 

to evaluate feasibility of using the standard CASSI method for 
the IR HSI, which would allow a simpler and less expensive 
construction of HSI devices. An overview of the HSI is 
supplemented by samples of reconstructions of artificial data 
(hyperspectral scenes) where we simulate the presence of 
chemical compounds on parts of the image and subsequently we 
reconstruct the hyperspectral scene. 

II. EXPERIMENTAL METHODS 

Simulations and reconstructions of data were evaluated by 
Matlab. Two types of scenes were selected for reconstruction – 
a simple and a complex scene. The simple one was a scene with 
constant intensity in every pixel, while the more complex one 
was an image from infrared camera. Several different variations 
were simulated for every type of scene by using different sizes 
of the scene in pixels (32x32, 64x64, 128x128, ...), number of 
spectral slices (117, 235, 470, ...), and concentration of the 
chemical substance. Nevertheless, all simulations presented in 
this article were carried out by using 128x128 mask and scene 
image, resolved in 470 spectral slices, detected on a 128x597 
detector.   

As a chemical substance we chose isopropyl alcohol, if not 
stated otherwise, we employed the path-concentration of 1000 
ppm m. The IR spectrum for isopropyl alcohol was obtained 
from The National Institute of Standards and Technology 
(NIST), data was compiled by: P.M. Chu, F.R. Guenther, G.C. 
Rhoderick, and W.J. Lafferty with resolution of 0.4820 cm-1 and 
parameters IFS66V (Bruker); 3-Term B-H Apodization.  

For simulation we focused on one of the standard methods 
of compressed scanning, the so-called CASSI (Coded Aperture 
Snapshot Spectral Imaging) method. We refer reader for the 
detailed description of the CASSI method to a number of 
available articles [1, 2]. 

For image restoration during the reconstruction we used the 
TwIST (Two-Step Iterative Shrinkage/Thresholding) algorithm 
to minimize the following expression: 

𝑓(𝑥) =  
1

2
‖𝑦 − 𝐾𝑥‖2 + λΦ(𝑥)  (1) 

where K is the linear direct operator describing projection of 
a hyperspectral datacube x onto a single detector snapshot y, Φ 
is a regularizer, λ is a regularization parameter. We employed as 
a regularizing term a sum of total variations in each spectral 
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image. [3] Operator K is calculated, for the sake of simplicity, 
so, that each spectral slice (image for every wavelength) is 
shifted by one column in the resulting detected image y. 

III. HYPERSPECTRAL IMAGING 

A. Overview 

There are three basic configurations of how one can obtain 
hyperspectral information (3D datacube). (1) Whisker-broom – 
the sample is scanned point by point, and for each such point one 
spectrum is recorded (1D detector, 2D scanning). (2) Push-
broom – the detector acquires the spectral information for the 
entire line of pixels of the image simultaneously (2D detector, 
1D scanning). The light passes through a slit and it is spectrally 
sheared on the detector, thus making is possible to record the 
spectral information along the entire line depending on the 
location from which the light comes. In this way a two-
dimensional array is obtained which has one spectral dimension 
and one spatial dimension. For another spatial dimension of the 
datacube, we need to scan the sample in a direction 
perpendicular to the imaging line. (3) Staring configuration – 
(2D detector, 1D scanning) this type of configuration does not 
require any movement (or spatial scanning) of the sample or a 
slit, so it is also referred as "staring configuration". The 
incoming light is recorded on the detector as a two-dimensional 
spatial array for each wavelength. This is done by means of 
filters (band-pass filters [4] or adjustable acousto-optic filters 
[5]) which can be placed on a revolving disc or change the 
passing wavelength respectively. [1] 

Whisker-broom and push-broom scans have excellent spatial 
and spectral resolution, however, the necessity to mechanically 
scan an image implies that the acquisition times are long. 
Typically, the times are in the order of tens of minutes to hours, 
depending on the size of the scanned area, the wavelength range 
and the number of scans per pixel [6]. For processes that are not 
stable in time is favorable to use the staring configuration since 
it is possible to record a complete datacube in a matter of seconds 
or minutes, depending on the number of scanned wavelength 
intervals. 

Selection of the suitable method depends highly on the 
concrete field of application, since HSI is being used in a wide 
variety of fields, e.g. medical imaging [7], quality control and 
food analysis [8, 9], forensic sciences [10, 11], art conservation 
[12], etc. 

B. Compressed sensing  

In conventional signal processing, we are limited by the so-
called Shannon-Nyquist theorem, which imposes that for the 
correct reconstruction of the signal, the sampling frequency 
must be at least twice as high as the highest frequency present in 
the signal. This is very inconvenient for capturing rapid 
processes or for the IR region, where we are significantly limited 
by the structural elements of IR cameras and their high purchase 
prices. 

However, Shannon-Nyquist theorem can be bypassed by 
compressed sensing (CS), which is based on two assumptions – 
(i) sparsity of a signal and (ii) signal measurement by using a set 
of incoherent (often random) projections of the signal.  

CS is often employed in imaging since common images 
count to the sparse datasets in the Fourier or wavelet space. For 
example, a conventional camera captures the scene pixel by 
pixel, creating a huge amount of RAW data. However, the image 
can be compressed to few percent of the original size without 
apparent loss of the image quality by using the strongest Fourier 
transform coefficients (JPEG compression). The problem is that 
we are not able to compress the scene until we capture it because 
we do not know a-priori which Fourier components will carry 
the important information about the image. 

The so-called CASSI (Coded Aperture Snapshot Spectral 
Imaging) method employing the CS theory makes it possible to 
encode the whole hyperspectral scene (3D dataset) in a single 
instant (2D snapshot) using a random mask. The random mask 
(random pattern) serves as an incoherent measurement 
projection. By employing a spectral shearing (prism or grating) 
the random mask is shifted to different positions for different 
wavelength, thus enabling subsequent HSI reconstruction. 

Variations of the CASSI technique are used also for shearing 
the temporal information (e.g. CACTI), thus making it possible 
to capture events taking place in the order of tens of ps (CUP 
technique) [13]. 

C. Using compressed sensing in IR hyperspectral imaging 

Absorption of mid-IR light changes the fundamental 
vibrational and rotational states of the chemical bonds. When the 
molecule interacts with IR light, chemical bonds begin to vibrate 
more energetically, and thus affect absorption at certain 
wavelengths in the spectrum that are characteristic for each 
chemical bond. 

The ability to absorb near-IR is relatively small and depends 
on the harmonic and anharmonic movement of molecules, which 
is due to electronic transitions. [14] Therefore, this paper is 
focusing on mid- and far-IR region. 

There are not many articles on application of CS in mid- and 
far-IR HSI [15-17]. This could be attributed to the problematic 
connected with the need of special optic elements and detectors 
in IR region. 

IV. RESULTS AND DISCUSSION 

The CASSI technique is exploiting a coded aperture and 
dispersive element(s) to modulate the optical field from the 
scene, which is captured in one instance on the detector into the 
two-dimensional snapshot. We used a random binary mask (see 
Fig. 1, right panel) as a coded aperture to encode a scene. The 
random mask is blocking approximately ½ of the incoming light 
and the columns in the mask, owing to their randomness, are 
incoherent. We created a HS datacube 𝐻(𝑖, 𝑗, 𝜆) by using the 
same scene 𝑆(𝑖, 𝑗) in all spectral images multiplied by a radiation 
spectrum of the light illuminating the scene 𝑅(𝜆):  

𝐻(𝑖, 𝑗, 𝜆) =  𝑆(𝑖, 𝑗). 𝑅(𝜆)   (2) 

To simulate the presence of a chemical substance the central 
part of the scene was “contaminated” with isopropyl alcohol 
which caused distinguishable difference in intensity at specific 
slices of the datacube (see Fig. 1, middle panel). In other words, 
we multiplied the datacube 𝐻(𝑖, 𝑗, 𝜆) by an absorption spectrum 
of the studied compound 𝐴(𝑖, 𝑗, 𝜆) for each scene pixel i, j:  
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Fig. 1.  Complex scene (left), slice of the datacube (complex scene 128x128 

pixels) with applied chemical substance (middle), random mask 128x128 pixels 

(right) 

𝐻′(𝑖, 𝑗, 𝜆) =  𝐻(𝑖, 𝑗, 𝜆). 𝐴(𝑖, 𝑗, 𝜆)     (3) 

𝐻′(𝑖, 𝑗, 𝜆) is a datacube that is coming to a HS camera where 
it is encoded by the random mask pattern 𝑀(𝑖, 𝑗) for every 
wavelength. The encoded image E can be expressed as:  

𝐸(𝑖, 𝑗, 𝜆) =  𝐻′(𝑖, 𝑗, 𝜆). 𝑀(𝑖, 𝑗)   (4) 

We used two types of test scenes S. One was a plain scene (S 
is constant), which equals for capturing an IR image obtaining a 
constant temperature through the whole scene, i.e. same 
intensity in each pixel. The second one was an arbitrarily chosen 
image from an IR camera (Fig. 1, left pannel). 

Spectrum of the light illuminating the scene R was either left 
constant for initial experiments or set according to a black body 
radiation attribute (Planck's law) which is wavelength 
dependent. We set temperature to be 300 K for a plain scene or 
differ from 283 to 323 K for an IR image. 

A. Detector signal 

The detected IR light in a CASSI-type camera is transmitted 
through the IR optics and then is refracted by a dispersive 
element to different positions on the detector depending on the 
wavelength. Every spectral slice of the datacube (scene for each 
wavelength) was shifted on the detector by one pixel-column to 
the right compared to the previous slice, i.e. slices were 
overlaying each other, which led to the total signal on detector 
(Fig. 2, lower panel) 𝐷(𝑘, 𝑙): 

𝐷(𝑘, 𝑙) =  ∑ 𝐸(𝑘, 𝑙 + 𝜆, 𝜆) + 𝑛(𝑘, 𝑙)𝜆           (5) 

where the term 𝑛(𝑘, 𝑙) enabled us to add a certain noise level to 
the detected image. 

In Fig. 2 (upper left panel) we can see the example of one 
spectral slice of the datacube H’. For the sake of clarity, we 
selected among many slices the wavelength, at which the 
absorption was the most significant. The resulting detector 
image for this scene is provided in Fig. 2 (lower panel). 

B. Data reconstruction 

Data reconstruction was evaluated by TwIST algorithm, which 
is an improved version of a standard IST algorithm [17]. For 
each slice of original datacube we obtain one slice of 
reconstructed datacube – see Fig. 2 (upper right panel) for an 
example of a reconstructed spectral slice. We can subsequently 
also recover the absorption spectrum of the chemical compound 
from the reconstructed datacube as a sum of the central area, 
where the chemical compound was in the original image. We 
obtain a good agreement between the original and reconstructed 
spectrum (see Fig. 3). The relative intensity and position of the  

Fig. 2. Reconstruction of the simple scene. Slice of original datacube (upper 

left), detected image at the detector (lower), reconstructed slice of the datacube 

(upper right). 

peaks to each other is particularly important to successfully 
determine the chemical compound and its volume.  

The reconstructed data are satisfying in terms of recognition 
of the chemical compound and, most importantly, its 
localization. However, it is not possible to retrieve details of the 
original scene back. As you can see in Fig. 3 (small panels), there 
is not a significant difference between simple and complex scene 
in the reconstructed slices. This indicates that subtle changes in 
a scene due to absorption from a minor concentration of a 
chemical compound are likely to be suppressed by the 
reconstruction algorithm. 

When we included the black body radiation (Planck’s law) 
into the simulation, the quality of reconstructed spectrum is only 
slightly degraded (see Fig. 4), nevertheless the quality of the 
reconstructed datacube slices is notably worse in case of the 
complex scene – Fig. 4 (small panel). In this case, it would be 
very difficult to correctly localize the chemical compound. This 
is likely caused by a significant complexity of the IR spectra, 
which are sparse in terms of the image information, however, 
contain complex spectral information. 

Finally, it is also worth noting, that with an addition of up to 
5% noise the data reconstruction is still reasonable for simple  

Fig. 3. Original (red) and reconstructed (blue) spectrum of constantly 

irradiated complex scene, reconstructed slices of datacube (small panel). 
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Fig. 4. Original (red) and reconstructed (blue) spectrum of the complex scene 

with black body radiation, reconstructed slices of datacube (small panel) 

scene, however in the case of the complex scene, even 1% of 
noise level has a significant effect on the reconstruction. 

V. CONCLUSION 

In this article we provided an overview of IR hyperspectral 
imaging, with particular attention to compressed sensing. We 
also summarize results of our testing calculations, which 
evaluate the feasibility of using CASSI technique for 
hyperspectral imaging of IR absorption spectra of chemical 
compounds. 

The central goal is to provide the possibility to rapidly 
capture spill of chemical substances, enabling both their 
localization and identification. 

We came to conclusion that for complex scenes we are able 
to determine the type of chemical compound, nevertheless we 
do not achieve sufficient reconstruction quality. The CASSI 
method using binary masks cannot be therefore directly applied 
in this case. Further research will be focused on using, for 
example, several measurements of different random masks, 
rotation of spectral sweeping, improved mask design, improving 
of the reconstruction algorithm, etc. 
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