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Abstract—We consider recent developments for memoryless
one-bit compressed with structured random matrices with ran-
domly subsampled Gaussian circulant matrices. We discuss that
in a small sparsity regime and for small enough accuracy δ,
m ∼ δ−8s log(N/sδ) measurements suffice to reconstruct the
direction and energy of any s-sparse signal up to accuracy δ via
an efficient program.

I. INTRODUCTION

In the traditional compressed sensing literature, it is typi-
cally assumed that one can reconstruct a signal based on its
analog linear measurements. In a real world sensing scenario,
measurements need to be quantized to a finite number of bits
before they can be transmitted, stored, and processed. Taking
this assumption seriosly, leads one to consider reconstruction
problems for a sparse signals x based on non-linear measure-
ments, which take the form y = Q(Ax), where Q : Rm → Am
is a quantizer and A denotes a finite quantization alphabet. In
the following we examine the measurement model

y = sign(Ax+ τ) , (1)

where A ∈ Rm×N , m � N , sign is the signum function
applied element-wise and τ ∈ Rm is a random vector con-
sisting of thresholds. The majority of the known work on
signal reconstruction results for the model in (1) are restricted
to standard Gaussian measurement matrices. This model is
concerned with recovering sparse signals x from measurements
as specified in (1), when A ∈ Rm×N is a matrix with standard
Gaussian entries, i.e. for all pairs i, j with i ∈ [m] and j ∈ [N ]
the entires of the matrix satisfy aij ∼ N (0, 1).

For the case τ = 0 the work [4, Theorem 2] has shown that
if A is m×N Gaussian and m ≥ Cε−1s log(N/sε) then, with
high probability, any s-sparse x, x′ with ‖x‖2 = ‖x′‖2 = 1
and sign(Ax) = sign(Ax′) satisfy ‖x−x′‖2 ≤ ε. In particular,
this shows that one can approximate x up to error ε by the
solution of the non-convex program

min ‖z‖0 s.t. sign(Ax) = sign(Az), ‖z‖2 = 1.

While the result [4, Theorem 1] shows that this result is near
optimal in the sense that the dependency on m and ε cannot
be improved in general, solving the proposed program is a
NP-hard problem. The work [3] showed that by modifying the
measurement matrix A the near optimal error dependence can
be obtained by a polynomial time algorithm.

To recover efficiently from Gaussian one-bit measurements,
Plan and Vershynin [8] proposed the linear reconstruction

program

min
z∈Rn

‖z‖1 s.t. sign(Az) = sign(Ax)

and ‖Az‖1 = 1.
(LP)

They showed that using m & ε−1s log2(N/s) Gaussian
measurements one can recover every x with ‖x‖1 ≤

√
s and

‖x‖2 = 1 by solving (LP) with reconstruction error ε1/5.
In [9] the authors introduced a different convex program and
showed that if m & ε−1s log(N/s), then one can achieve a
reconstruction error ε1/6 even if there is quantization noise
present.

A central problem in the regime τ = 0 is that all informa-
tion on the energy of the signal x is lost in the quantization
step. It was recently shown that one can recover full signals
by incorporating appropriate thresholds. In [6] it was shown
that by taking Gaussian thresholds τi one can recover energy
information by slightly modifying the linear program (LP). A
similar observation was made in [2] for the following second
order cone program

min
z∈RN

‖z‖1 s.t. sign(Az + τ) = sign(Ax+ τ),

and ‖z‖2 ≤ R .
(CP)

The paper [6] also proposed a method to estimate ‖x‖2 using
a single deterministic threshold τi = τ that works well if one
has some prior knowledge of the energy range of the signal.

In this note we want to investigate the applicability of the
program (CP) for recovering s-sparse signals from structured
measurements. In particular, we study the recovery problem
in (1), when A is a suitable normalized, randomly subsampled
Gaussian circulant matrix. The result we want to discuss shows
that for an efficiently sparse signal x ∈ RN the solution of
the second-order cone program (CP) satisfies ‖x − x#‖2 ≤
Rε1/8 with high probability assuming that the sparsity s of x
satisfies s ≤ cε

√
N/ log(N) and ‖x‖2 ≤ R. This result can be

deduced by studying a `1/`2-restricted isometry property (RIP)
for the matrix A. The Gaussian circulant measurement model
is important for several real-world applications, including SAR
radar imaging, Fourier optical imaging and channel estimation
(see e.g. [10]).

II. RECOVERY GARUANTEES FOR GAUSSIAN CIRCULANT
MATRICES

We let Σs,N denote the set of all s-sparse vectors with unit
norm. We say that x ∈ RN is s-effectively sparse if ‖x‖1 ≤
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√
s‖x‖2. We let Σeff

s,N denote the set of all s-effectively sparse
vectors. Clearly, if x is s-sparse, then it is s-effectively sparse.
For any x ∈ RN we let Dx = diag(x) ∈ RN×N be the
diagonal matrix generated by x and let Γx ∈ RN×N denote
the circulant matrix generated by x, i.e.

Γx =


xN x1 x2 · · · xN−2 xN−1

xN−1 xN x1 · · · xN−3 xN−2

xN−2 xN−1 xN · · · xN−4 xN−3

...
...

...
...

...
...

x1 x2 x3 · · · xN−1 xN

 .

For a set I ⊆ [N ] we let RI : RN → R|I| denote the
coordinate projection onto the coordinates index by I .

We study the model in (1) with the following measurement
matrix: We consider a vector θ of i.i.d. random selectors
with mean m/N and let I = {i ∈ [N ] : θi = 1}. Let
g ∼ N (0, id) be an N -dimensional standard Gaussian vector
that is independent of θ. We define the randomly subsampled
Gaussian circulant matrix by A = RIΓg . Note that E|I| = m,
so m corresponds to the expected number of measurements in
this model.

Theorem II.1. Let A = RIΓg and let τ1, . . . , τm be inde-
pendent N (0, R2)-distributed random variables. Further, let
η ∈ [0, 1] and 0 < δ ≤ (log2(s) log(N))−1/4. Assume that

s . min{
√
δ4N/ log(N), δ2N/ log(1/η)},

m & δ−4s log(eN/s),

Then the following holds with probability exceeding 1 − η:
for any x ∈ RN with ‖x‖1 ≤

√
s‖x‖2 and ‖x‖2 ≤ R, any

solution x#
CP to the second-order cone program (CP) satisfies

‖x− x#
CP‖2 ≤ R

√
δ.

The conclusions of Theorem II.1 are not limited to the
regime δ ≤ (log2(s) log(N))−1/4 and can be extended to
δ ∈ (0, 1). In this regime of δ the dependencies for m and
s on N, η, δ are more involved. In this note we will limit our
attention to the result stated above.

To deduce the result, we will use the following abstract
version of the program (CP) for a matrix C ∈ Rm×(N+1):

min
z∈RN

‖z‖1 s.t. sign(C[z,R]) = sign(C[x,R]),

and ‖z‖2 ≤ R.
(2)

Here [z,R] ∈ RN+1 denotes the vector obtained by appending
R ∈ R to the vector z ∈ RN . It is straight forward to verify
that the program in (2) is obtained by taking C = 1

m

√
π
2B

with B = Dθ[Γg, h], where [Γg, h] ∈ Rm×(N+1) denotes the
matrix obtained by appending the column h consisting of a
standard gaussian vector h ∼ N (0, id) to Γg .

To deduce the result, we will first highlight the relation
between one-bit compressed sensing and the `1/`2-restricted
isometry property (RIP) and then have a glimpse at how to
prove that the matrix 1

m

√
π/2RI [Γg, h] satisfies an `1/`2-RIP

estimate.

A. `1/`2-RIP and one-bit compressed sensing

The notion of `1/`2-RIP was introduced by Foucart [7].
Initially, this notion should serve as a short-cut to the theory
of one-bit compressed sensing for unstructured Gaussian ma-
trices.

Definition II.2. A matrix A ∈ Rm×N satisfies RIP1,2(s, δ) if

(1− δ)‖x‖2 ≤ ‖Ax‖1 ≤ (1 + δ)‖x‖2, for all x ∈ Σs,N

and A satisfies RIPeff
1,2(s, δ) if

(1− δ)‖x‖2 ≤ ‖Ax‖1 ≤ (1 + δ)‖x‖2, for all x ∈ Σeff
s,N .

Foucart observed that, if A ∈ Rm×N satisfies
RIPeff

1,2(9s, δ) for δ ≤ 1/5, then, for every x ∈ Σeff
N,s, any solu-

tion x#
LP to (LP) satisfies the error bound ‖x− x#

LP‖2 ≤ 2
√

5δ
(cf. [7, Theorem 8]). This analysis can be extended to an
analysis of (CP) by using arguments from [7, Section 8.4]
and [2, Corollary 9].

Lemma II.3. Let δ < 1/5. Suppose that C ∈ Rm×(N+1)

satisfies RIPeff
1,2(36(

√
s + 1)2, δ). Then, for any x ∈ RN

satisfying ‖x‖1 ≤
√
s‖x‖2 and ‖x‖2 ≤ R, any solution x# to

(2) satisfies
‖x− x#‖2 ≤ 2R

√
δ.

Proof: In the proof of [2, Corollary 9] it shown that

‖u− v‖2 ≤ 2

∥∥∥∥ [u, 1]

‖[u, 1]‖2
− [v, 1]

‖[v, 1]‖2

∥∥∥∥
2

(3)

for any two vectors u, v ∈ B`N2 . Let x ∈ Σeff
s,N ∩ RB`N2 , x#

be any solution to (2) and write

x̄ = [x,R]/‖[x,R]‖2, x̄# = [x#, R]/‖[x#, R]‖2.

Since x/R, x#/R ∈ B`N2 , (3) implies that

‖x− x#‖2 ≤ 2R‖x̄− x̄#‖2.

By the parallellogram identity,∥∥∥ x̄− x̄#

2

∥∥∥2

2
=
‖x̄‖22 + ‖x̄#‖22

2
−
∥∥∥∥ x̄+ x̄#

2

∥∥∥∥2

2

. (4)

Let us observe that [x,R] and [x#, R] are (
√
s+1)2-effectively

sparse. Indeed, by optimality of x# for (2) and s-effective
sparsity of x,

‖[x#, R]‖1 ≤ ‖[x,R]‖1 ≤
√
s‖x‖2 +R ≤ R(

√
s+ 1)

and ‖[x,R]‖2, ‖[x#, R]‖2 ≥ R. We claim that

z :=
x̄+ x̄#

2
∈ Σeff

36(
√
s+1)2,N+1 . (5)

Once this is shown, we can use sign(Cx̄) = sign(Cx̄#) and
the RIPeff

1,2(36(
√
s+ 1)2, δ)-property of C to find∥∥∥∥ x̄+ x̄#

2

∥∥∥∥
2

≥ 1

1 + δ

∥∥∥∥C( x̄+ x̄#

2

)∥∥∥∥
1

(6)

=
‖Cx̄‖1 + ‖Cx̄#‖1

2(1 + δ)
≥ (1− δ)

(1 + δ)
.
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Hence, (4) implies∥∥∥ x̄− x̄#

2

∥∥∥2

2
≤ 1− (1− δ)2

(1 + δ)2
=

4δ

(1 + δ)2
.

Let us now prove (5). Since [x,R] and [x#, R] are (
√
s+1)2-

effectively sparse,

‖z‖1 ≤
1

2

∥∥∥ [x,R]

‖[x,R]‖2

∥∥∥
1

+
1

2

∥∥∥ [x#, R]

‖[x#, R]‖2

∥∥∥
1
≤
√
s+ 1.

It remains to bound ‖z‖2 from below. In (6) we already
observed that

‖Cz‖1 =
1

2

∥∥∥ C[x,R]

‖[x,R]‖2

∥∥∥
1

+
1

2

∥∥∥ C[x#, R]

‖[x#, R]‖2

∥∥∥
1
≥ (1− δ). (7)

Set t = 8s + 8 ≥ 4(
√
s + 1)2. Let T0 be the index set

corresponding to the t largest entries of z, T1 be the set
corresponding to the next t largest entries of z, and so on.
Then, for all k ≥ 1,

‖zTk
‖2 ≤

√
t‖zTk

‖∞ ≤ ‖zTk−1
‖1/
√
t.

Since C satisfies RIPeff
1,2(36(

√
s + 1)2, δ), it satisfies

RIP1,2(t, δ) and hence

‖Cz‖1 ≤
∑
k≥0

‖CzTk
‖1 ≤ (1 + δ)

(
‖zT0
‖2 +

∑
k≥1

‖zTk
‖2
)

≤ (1 + δ)‖z‖2 +
(1 + δ)√

t
‖z‖1

≤ (1 + δ)‖z‖2 +
(1 + δ)√

t
(
√
s+ 1).

≤ (1 + δ)‖z‖2 +
1

2
(1 + δ). (8)

Since δ ≤ 1/5, (7) and (8) together yield

‖z‖2 ≥
(1− δ)− 1

2 (1 + δ)

(1 + δ)
=

1
2 −

3
2δ

1 + δ
≥ 1

6
.

This lemma reduces the analysis of recovery garuantees for
x ∈ Σeff

N,s to an analysis of the corresponding `1/`2-property
of the matrix 1

m

√
π
2Dθ[Γg, h].

B. The `1/`2-RIP for subsampled Gaussian circulant matrices

In this section we will complete the proof of Theorem II.1
by discussing that under the conditions of Theorem II.1 the
matrix 1

m

√
π
2Dθ[Γg, h] satisfies RIPeff

1,2(s, δ).

Theorem II.4. Fix δ > 0. Let B = RI [Γg h] be a randomly
subsampled Gaussian circulant matrix with thresholds. Under
the assumptions on s,m,N, δ, η of Theorem II.1 the matrix
1
m

√
π
2B satisfy RIPeff

1,2(s, δ) with probability at least 1− η.

We will only sketch the proof of this result.

Sketch of Proof: LetNδ ⊂ Σs,N+1 be a minimal δ-net for
Σs,N+1 with respect to the Euclidean norm. Fix x ∈ Σs,N+1

and let y ∈ Nδ be such that ‖x − y‖2 ≤ δ. We consider the
following events:

ERIP,B =
{
∀ z ∈ Σ2s,N+1 :

1√
m
‖Bz‖2 ≤ 2 + C

}
EΓ,h,`1 =

{
∀y ∈ Nδ :

∣∣∣ 1

N

√
π

2
‖[Γg h]y‖1 − 1

∣∣∣ ≤ δ}
EI =

{m
2
≤ |I| ≤ 3m

2

}
E =

{
∀y ∈Nδ :∣∣∣ 1

m

√
π

2
‖By‖1 −

1

N

√
π

2
‖[Γg, h]y‖1

∣∣∣ ≤ 2δ
}

We note that under the events EI and ERIP,B there is an
absolute constant C0 > 0, such that∣∣∣ 1

m

√
π

2
‖Bx‖1 −

1

m

√
π

2
‖By‖1

∣∣∣
≤ δ

1 + κ

1

m

√
π

2

∥∥∥B( x− y
‖x− y‖2

)∥∥∥
1

≤ δ

1 + κ

|I|
m

sup
z∈Σ2s,N+1

1√
|I|

√
π

2
‖Bz‖2 ≤ C0δ.

Hence, if all the events hold simultaneously, then the triangle
inequality implies that there is an absolute constant C1 > 0,
such that∣∣∣ 1

m

√
π

2
‖Bx‖1 − 1

∣∣∣
≤
∣∣∣ 1

m

√
π

2
‖Bx‖1 −

1

m

√
π

2
‖By‖1

∣∣∣
+
∣∣∣ 1

m

√
π

2
‖By‖1 −

1

N

√
π

2
‖[Γg, h]y‖1

∣∣∣
+
∣∣∣ 1

N

√
π

2
‖[Γg, h]y‖1 − 1

∣∣∣ ≤ C1δ.

With these observations the proof boilds down to show that
the events ERIP,B , EΓ,h,`2 , EΓ,h,`1 , EI hold with probability at
least 1− cη with respect to the net Nδ . The probability of the
events EI , EΓ,h,`2 can be estimated by standard arguments for
Bernoulli random variables and Gaussian process, respectively.
A sufficent estimate for the probability of the event ERIP,B can
be deduced form earlier results in [5]. Finally, the probability
of the event E can be studied by using symmetrization
methods.

Combining Lemma II.3 and Theorem II.4 the results we
claimed in Theorem II.1 follows.

III. LIMITATIONS OF THE `1/`2-RIP

As we have seen in the preciding sections the RIP1,2(s, δ)
can be used to deduce recovery guarantees for randomly
subsampled circulant matrices, which are generated by a
Gaussian random vector. However the use of the `1/`2-RIP
has certain limitations. In particular the analysis cannot be
extend to the subgaussian regime. This can be seen by the
following example of a matrix Γε generated by a Rademacher
vector ε. Suppose that the measurement matrix is a (rescaled,
subsampled) Bernoulli circulant matrix, the threshold vector τ
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in (1) is zero and consider, for 0 < λ < 1, the normalized
2-sparse vectors

x+λ = (1 + λ2)−1/2(1, λ, 0, . . . , 0),

x−λ = (1 + λ2)−1/2(1,−λ, 0, . . . , 0).
(9)

Then,

sign(〈(Γε)i, x+λ〉) = sign(εN+1−i + λεN+2−i)

= sign(εN+1−i)

= sign(εN+1−i − λεN+2−i)

= sign(〈(Γε)i, x−λ〉) .

This shows that x+λ and x−λ produce identical one-bit mea-
surements. Suppose that A = αRIΓε satisfies this property for
a suitable I ⊂ [N ] and scaling factor α. Since sign(Ax+λ) =
sign(Ax−λ), we find using [7, Theorem 9] and the triangle
inequality, that every solution x# of the program (LP) has to
satisfy

2λ

(1 + λ2)1/2
= ‖x+λ − x−λ‖2

≤ ‖x+λ − x#‖2
+ ‖x# − x−λ‖2
≤ C
√
δ.

for some absolute constant C > 0. By taking λ → 1 we find
δ ≥
√

2/C.

One might circumvent this counter example by excluding
very sparse vectors. In fact, in the case of unstructured sub-
gaussian random matrices, positive recovery results for sparse
vectors with an additional `∞-norm constraint were shown in
[1].

The `1/`2-RIP reflects this behavior by the fact that the
expectations for 1-sparse vectors and s-sparse vectors (for s >
1) are incongruent. Let us examine this fact for the following
general model: Let A ∈ Rm×N denote a matrix consiting of m
isotropic, independent, identically distributed subgaussian rows
ai ∈ RN . We will show that in this setting it, is impossible for
A to satisfy RIPeff

1,2(s, δ) for arbitrary δ > 0 and large enough
s� N .

For a 1-sparse vector x = ej ∈ ΣN,1 we have
m−1E‖Ax‖1 = m−1

∑m
i=1 E|aij | = EA. This implies that

in order to have the following inequality for all δ > 0

(1− δ)‖x‖2 ≤ α‖Ax‖1 ≤ (1 + δ)‖x‖2 (10)

we have to demand α = E−1
A .

We claim that if EA 6=
√

2/π, then RIP1,2(s, δ) cannot
hold for δ → 0.

To see this, let ρ(A) = |
√

2/π−EA| and for a set J ⊂ [N ]
with |J | = s we introduce the s-sparse vector

x =
1√
s

1J . (11)

Let us observe the following fact concerning the expectation
of |〈ai, x〉| for all i ∈ [m], when x is of the form given in (11):∣∣∣∣∣E|〈ai, x〉| −

√
2

π

∣∣∣∣∣ ≤ 3
3
2

√
s
. (12)

To show this, recall the following version of the Berry-Esseen
inequality (see e.g. [11, Theorem 2.1.30]): Let (Xj)j∈[s]

denote a sequence of independent random variables with mean
0, such that for all j ∈ [s] we have σ = (

∑
j∈[s] ‖Xj‖2L2)1/2 <

∞ and τi = ‖Xj‖L3 < ∞, then for a standard gaussian
random varible g ∼ N (0, 1) there exists an absolute constant
C > 0 such that∫

R

∣∣∣∣∣∣P
(
σ−1

∑
j∈[s]

Xj > u

)
− P (g > u)

∣∣∣∣∣∣ du < C
1

σ3

∑
j∈[s]

τ3
i .

We observe that by the triangle inequality and the symmertry
of the random varibles 〈ai, x〉 and g the following estimate
holds∣∣∣∣E|〈ai, x〉| −

√
2

π

∣∣∣∣ = |E|〈ai, x〉| − E|g||

≤
∣∣∣∣∫ ∞

0

P(|〈ai, x〉| > u)du−
∫ ∞

0

P(|g| ≥ u)du

∣∣∣∣
≤ 2

∫ ∞
0

∣∣P(〈ai, x〉 > u)− P(g ≥ u)
∣∣du .

(13)

Further, note that E|〈y, ai〉|2 = ‖y‖22 for every y ∈ RN ,
implies that for all i ∈ [m] we have E|aij |2 = 1 and
‖aij‖L3 ≤

√
3. Since 〈ai, x〉 = 1√

s

∑
j∈J aij we can apply

this result with Xj = aij . Thus, combining (13) with the
Berry-Esseen inequality yields the estimate (12).

Since the 〈ai, x〉 are subgaussian there is a constant L > 0,
such that maxi∈[m] ‖〈ai, x〉‖ψ2 ≤ L. Therefore, the (genearl-
ized) Hoeffding’s inequality yields,

P
(∣∣∣ 1

m

m∑
i=1

|〈ai, x〉 − E
1

m

m∑
i=1

|〈ai, x〉
∣∣∣ > t

)
≤ e−t

2m/L .

Thus, if t ≤ 2−4s−1/2, then with probability exceeding 1 −
cLe
−m/s we have∣∣∣ 1

m

m∑
i=1

|〈ai, x〉| − E
1

m

m∑
i=1

|〈ai, x〉
∣∣∣ ≤ 1

24
√
s
.

Combining this with the prior estimate (12) shows that with
owerwhelming probability∣∣∣ 1

m

m∑
i=1

|〈ai, x〉| −
√

2

π
‖x‖2

∣∣∣ ≤ 1 + 243
3
2

24
√
s
≤ 2 · 3 3

2

√
s

. (14)

In particular, on this event, we have

δ∗ =
∣∣∣EA −√ 2

π

∣∣∣
≤
∣∣∣ 1

m

m∑
i=1

|〈ai, x〉| −
√

2

π
‖x‖2

∣∣∣
+
∣∣∣ 1

m

m∑
i=1

|〈ai, x〉| − EA‖x‖2
∣∣∣

≤ C√
s

+
∣∣∣ 1

m

m∑
i=1

|〈ai, x〉| − EA‖x‖2
∣∣∣ .

Assuming that s ≥ 4C2δ−2
∗ , we find that | 1

m

∑m
i=1 |〈ai, x〉| −

EA‖x‖2| ≥ δ∗/2. This shows that the estimate in (10) cannot
holds simultaneously for 1- and s-sparse vectors.
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IV. CONCLUSION

We have seen that for partial Gaussian circulant matrices
the program (CP) can be used to efficiently recover the
direction and the energy of s-sparse signal form their one-bit
measurements with probability at least 1−η, provided that the
sparsity does not exceed s .

√
δ4N/ log(N) for a polynomial

scaling in N , say N−α for α > 0, of the probability η. Clearly
the assumption

√
δ4N/ log(N) is a severe restriction. Note

that for δ ≤ cN−1/4 this restriction excludes all reasonable
scales for the sparsity s. It seem to be an interesting and
necessary challange to extend the recovery result beyond the
small sparsity regime.

The aspect of extending the theory beyond the theory of a
Gaussian generator, i.e. the circulant matrix Γg is generated by
a standard Gaussian g ∼ N (0, id), was addressed in the last
section. We have seen that in general the approach of passing
through the `1/`2-RIP in order to study recovery garuantees
for matrices consisting of subgaussian, isotropic rows might
cause serious problems due to the fact that the expectaions for
1- and s-sparse vectors are incongruent. It might nevertheless
be interesting to find scenarios in which recovery garuantees
for subgaussian distributions hold.
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