
Binary Compressive Sensing via
Smoothed `0 Gradient Descent

Tianlin Liu
Department of Computer Science and Electrical Engineering

Jacobs University Bremen
28759 Bremen, Germany

Email: t.liu@jacobs-university.de

Dae Gwan Lee
Mathematisch-Geographische Fakultät

Katholische Universität Eichstätt-Ingolstadt
85071 Eichstätt, Germany

Email: daegwans@gmail.com

Abstract—We present a Compressive Sensing algorithm for
reconstructing binary signals from its linear measurements.
The proposed algorithm minimizes a non-convex cost function
expressed as a weighted sum of smoothed `0 norms which
takes into account the binariness of signals. We show that for
binary signals the proposed algorithm outperforms other existing
algorithms in recovery rate while requiring a short run time.

I. INTRODUCTION

Compressive Sensing (CS) is a method in signal processing
which aims to reconstruct signals from a relatively small
number of measurements. It has been shown that sparse signals
can be reconstructed with a sampling rate far less than the
Nyquist rate by exploiting the sparsity [1].

In this paper, we focus on Binary Compressive Sens-
ing (BCS) which restricts the signals of interest to binary
{0, 1}-valued signals, which are widely used in engineering
applications, such as fault detection [2], single-pixel image
reconstruction [3], and digital communications [4]. Related
works are as follows: Nakarmi and Rahnavard [5] designed a
sensing matrix tailored for binary signal reconstruction. Wang
et al. [6] combined `1 norm with `∞ norm to reconstruct sparse
binary signals. Nagahara [7] exploited the sum of weighted
`1 norms to effectively reconstruct signals whose entries are
integer-valued and, in particular, binary signals and bitonal
images. Keiper et al. [8] analyzed the phase transition of binary
Basis Pursuit.

We note that most of the previous work on BCS are based
on convex optimization. Indeed, convex optimization based
algorithms allow performance guarantee via rich mathematical
tools. However, they are found to be notoriously slow in large-
scale applications compared to greedy methods such as the
Orthogonal Matching Pursuit (OMP) [9]. On the other hand,
greedy methods like OMP are fast but often have a worse
recovery rate than convex optimization methods. In this work,
we propose a fast BCS algorithm with a high recovery rate.
Taking the binariness of signals into account, our algorithm is a
gradient descent method based on the smoothed `0 norm [10].
Through numerical experiments, we show that the proposed
algorithm compares favorably against previously proposed CS
and BCS algorithms in terms of recovery rate and speed.

The rest of the paper is organized as follows. We give
a short review on CS/BCS algorithms in Section II and

present our algorithm in Section III. In Section IV, we present
experimental results which compare the performance of the
proposed algorithm with other algorithms. We conclude this
paper with some remarks in Section V.

Notations:

For a vector v = (v1, · · · , vN )> and 1 ≤ p ≤ ∞, the
`p norm of v is denoted by ‖v‖p. The number of non-zero
entries in v is denoted by ‖v‖0. The probability of an event
E is denoted by P(E). Let [N ] = {1, · · · , N} for N ∈ N. We
denote by 1N the N -dimensional vector with all entries equal
to 1.

II. BINARY COMPRESSIVE SENSING (BCS)

In the standard CS scheme, one aims to recover a sparse
signal from its linear measurements. The constraints posed by
the measurements can be formulated as

Φ z = y, z ∈ RN , (1)

where Φ ∈ Rm×N , m � N , is the measurement matrix and
y = Φx ∈ Rm is the measurement of a sparse signal x ∈ RN .
CS algorithms exploit the fact that x is sparse and seek a sparse
solution z satisfying (1).

The BCS scheme considers binary signals for x. Note that
a binary signal x is sparse if and only if its complementary
binary signal x̃ := 1N − x is dense, i.e., is almost fully sup-
ported. As the measurement matrix Φ is known, the equation
(1) converts equivalently to

Φz̃ = ỹ, (2)

where z̃ := 1N − z and ỹ := Φx̃ = Φ1N − y. This shows
that reconstructing a sparse signal z under the constraint (1)
is equivalent to reconstructing a dense signal z̃ under the
constraint (2). For this reason, in contrast to the case of generic
signals, binary signals that are dense can be recovered as well
as those that are sparse.

Two types of models for binary signals have been consid-
ered in the literature (e.g., [11], [6], [7]): (i) x is a deterministic
vector which is binary and sparse, i.e., most of its entries are 0
and only few are 1; (ii) x is a random vector whose entries are
independent and identically distributed (i.i.d.) with probability
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distribution P(xj = 1) = p for some fixed 0 ≤ p ≤ 1. If p is
small, a realization of x is likely a sparse binary signal.

In this work, we shall consider the second model which can
accommodate dense binary signals as well as sparse binary
signals.

Below we give a short review of CS/BCS methods that are
related to our work.

A. `0 minimization (L0)

A naive approach to finding sparse solutions is the `0
minimization,

min
z∈RN

‖z‖0 subject to Φz = y. (P0)

This method works generally for continuous-valued signals
that are sparse, i.e., signals whose entries are mostly zero.
However, solving the `0 minimization requires a combinatorial
search and is therefore NP-hard [12].

B. Smoothed `0 minimization (SL0)

Smoothed `0 minimization (SL0) [10] replaces the `0 norm
in (P0) with a non-convex relaxation:

min
z∈RN

N∑
i=1

(
1− exp

(
−z2

i

2σ2

))
subject to Φz = y.

This is motivated by the observation

lim
σ→0

exp

(
−t2

2σ2

)
=

{
1 if t = 0

0 if t 6= 0,

which implies that for any z = (z1, . . . , zN )> ∈ RN ,

lim
σ→0

N∑
i=1

(
1− exp

(
−z2

i

2σ2

))
= ‖z‖0. (3)

Noticing that z 7→
∑N
i=1

(
1−exp

(−z2i
2σ2

))
is a smooth function

for any fixed σ > 0, Mohimani et al. [10] proposed an
algorithm based on the gradient descent method. The algorithm
iteratively obtains an approximate solution by decreasing σ.

Mohammadi et al. [13] adapted the SL0 algorithm par-
ticularly to non-negative signals. Their algorithm, called the
Constrained Smoothed `0 method (CSL0), incorporates the
non-negativity constraints by introducing some weight func-
tions into the cost function. Empirically, CSL0 shows better
performance than SL0 in the reconstruction of non-negative
signals.

C. Basis Pursuit (BP)

A well-known and by now standard relaxation of (P0) is the
`1-minimization, also known as the Basis Pursuit (BP) [14]:

min
z∈RN

‖z‖1 subject to Φz = y. (P1)

Similar to (P0), this method works generally for continuous-
valued signals x ∈ RN that are sparse.

z1

z2

(1, 0)

Φz = y

z1

z2

(1, 0)

( 1
2 ,

1
2 )

Φz = y

Fig. 1. Left: the minimization of ‖z‖1 finds sparse solutions. Right: the
minimization of ‖z− 1

2
· 1N‖∞ forces the entries |zi − 1

2
| to be small and

of equal magnitude.

t

(0, p)

(1, 1− p)

Fig. 2. The function f given in (4).

D. Boxed Basis Pursuit (Boxed BP)

Donoho et al. [11] proposed the Boxed Basis Pursuit (Boxed
BP) for the reconstruction of k-simple bounded signals:

min
z∈[0,1]N

‖z‖1 subject to Φz = y.

The intuition behind Boxed BP is straightforward: the `1
norm minimization promotes sparsity of the solution while
the restriction z ∈ [0, 1]N reduces the set of feasible solutions.
Recently, Keiper et al. [8] analyzed the performance of Boxed
BP for reconstructing binary signals.

E. Sum of Norms (SN)

Wang et al. [6] introduced the following optimization prob-
lem which combines the `1 and `∞ norms:

min
z∈RN

‖z‖1 + λ ‖z− 1
2 1N‖∞ subject to Φz = y.

Minimizing ‖z‖1 promotes sparsity of z while minimizing
‖z − 1

2 1N‖∞ forces the entries |zi − 1
2 | to be small and of

equal magnitude (see Fig. 1). The two terms are balanced by
a tuning parameter λ > 0.

F. Sum of Absolute Values (SAV)

Nagahara [7] proposed the following method for reconstruc-
tion of discrete signals whose entries are chosen independently
from a set of finite alphabets α = {α1, α2, . . . , αL} with
a priori known probability distribution. In the special case
α = {0, 1} of binary signals, SAV is formulated as,

min
z∈RN

(1− p) ‖z‖1 + p ‖z− 1N‖1 subject to Φz = y,

where p = P(xj = 1), j ∈ [N ], is the probability distribution
of the entries of x. If p ≈ 0, i.e., if x is sparse, then (1 −
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p) ‖z‖1 + p ‖z− 1N‖1 ≈ ‖z‖1 so that SAV performs similar
to BP. We note that

(1− p) ‖z‖1 + p ‖z− 1N‖1 =
N∑
i=1

f(zi),

where

f(t) :=


−t+ p if t < 0,

(1− 2p) t+ p if 0 ≤ t < 1,

t− p if t ≥ 1.

(4)

III. BOX-CONSTRAINED SUM OF SMOOTHED `0

L0 and SL0 utilize the `0 norm and its smoothed version
respectively, however, they do not take into account that x is
binary. On the other hand, Boxed BP, SN, and SAV utilize the
`1 norm in one way or another and are specifically adjusted to
the binary setting. A natural question arises: Can we achieve
a better recovery rate for binary signals by adjusting L0 and
SL0 to the binary setting?

We note that Boxed BP takes into account the binariness of
x by imposing the restriction x ∈ [0, 1]N . It is straightforward
to apply this trick to L0 and SL0, and we will call the
resulting algorithms Boxed L0 and Boxed SL0 respectively.
Boxed L0 is still NP-hard like L0, but Boxed SL0 shows a
clear improvement over SL0 while requiring a similar amount
of run time (Fig. 3). However, the recovery rate of Boxed SL0
is significantly worse than Boxed BP or SN.

In this paper, we aim to adapt the SAV method and
the restriction x ∈ [0, 1]N to SL0, in order to achieve a
better performance. A straightforward adaptation leads to the
following formulation. For σ > 0 small,

min
z∈[0,1]N

Fσ(z) subject to Φz = y, (5)

where

Fσ(z) , (1− p)
N∑
i=1

(
1− e−z

2
i /(2σ

2)
)

+ p
N∑
i=1

(
1− e−(zi−1)2/(2σ2)

)
=

N∑
i=1

(
1− (1− p) e−z

2
i /(2σ

2) − p e−(zi−1)2/(2σ2)
)

(6)

and p = P(xj = 1), ∀j ∈ [N ]. Note that by (3), we have

lim
σ→0

Fσ(z) = (1− p) ‖z‖0 + p ‖z− 1N‖0

so that F0(z) can be approximated by Fσ(z) with small σ > 0.
Next, we will use a weight function to incorporate the

restriction z ∈ [0, 1]N into the function Fσ(z). For integers
k ≥ 1, let

wk(t) ,

{
1 if 0 ≤ t ≤ 1

k otherwise.

For σ > 0 and integers k ≥ 1, we define

F boxed
σ,k (z)

,
N∑
i=1

wk(zi)
(

1− (1− p) e−z
2
i /(2σ

2) − p e−(zi−1)2/(2σ2)
)
.

Note that since 1− (1− p) e−t2/(2σ2) − p e−(t−1)2/(2σ2) > 0
for all t ∈ R, minimizing F boxed

σ,k (z) forces wk(zi) to be small
so that all zi’s lie within [0, 1]. In this way, the restriction z ∈
[0, 1]N is incorporated into the cost function. Our optimization
problem now reads as follows: For σ > 0 small and k ∈ N
large,

min
z∈RN

F boxed
σ,k (z) subject to Φz = y.

To solve this problem, we propose an algorithm which is
based on the gradient descent method and is implemented
similarly as algorithms in [10], [13]. A major difference in our
algorithm is that the cost function

∑N
i=1

(
1 − exp

(−z2i
2σ2

))
of

SL0 is replaced with F boxed
σ,k (z) which is designed specifically

for binary signals by adapting the formulation of SAV [7].

Algorithm 1 Box-Constrained Sum of Smoothed `0 (BSSL0)
1: Data: Measurement matrix Φ ∈ Rm×N , observation y ∈

Rm, probability distribution prior p = P(xj = 1).
2: Parameters: Iters and L are the number of iterations in

the outer and inner loops respectively, µ is a step-size
parameter for gradient descent, and d is a decreasing factor
for σ.

3: Initialization: x̂ = Φ>(ΦΦ>)−1y, σ = 2 max |x̂|,
4: k = 1 +Np/Iters;
5: for 1 : Iters do
6: for 1 : L do
7: x̂← x̂− σ2µ∇F boxed

σ,k (z); % gradient descent
8: x̂← x̂− Φ>(ΦΦ>)−1(Φx̂− y); % projection
9: end for

10: σ = σ × d;
11: k = k +Np/Iters;
12: end for
13: x̂← round(x̂); % round to a binary vector

The proposed algorithm is comprised of two nested loops. In
the outer loop, we slowly decrease σ and iteratively search for
an optimal solution from a coarse to a fine scale by decreasing
σ by a factor of 0 < d < 1. As σ decreases, we also gradually
increase k so that a larger penalty is put on solutions that
have entries outside the range [0, 1]. The inner loop performs
a gradient descent of L iterations for the function F boxed

σ,k (z),
where σ and k are given from the outer loop. In each iteration
of the gradient descent, the solution is projected into the set
of feasible solutions {z : Φz = y}.

Numerical experiments in Section IV show that for binary
signals the proposed algorithm outperforms all other algo-
rithms (BP, Boxed BP, SN, SAV, SL0, and Boxed SL0).

As already mentioned, our algorithm is implemented simi-
larly as SL0 [10], [13]. The parameters used in our algorithm
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are exactly the same as in [10] except k and p. As justified in
[10, Section IV-B], we set the initial estimate of x as the min-
imum `2 norm solution of Φz = y, i.e., x̂ = Φ>(ΦΦ>)−1y.
The initialization value for σ is discussed in [10, Remark 5 in
Section III]. Also, the choice of the step-size σ2µ for gradient
descent is justified in [10, Remark 2 in Section III] and the
choice of k in [13, Lemma 1].

The gradient of F boxed
σ,k (z) used in Algorithm 1 is given by

∇F boxed
σ,k (z) =

(
∂F boxed

σ,k (z)

∂z1
, . . . ,

∂F boxed
σ,k (z)

∂zN

)>
,

where
∂F boxed

σ,k (z)

∂zi
=
wk(zi)

σ2

(
(1− p) zi e−z

2
i /(2σ

2)

+ p (zi − 1) e−(zi−1)2/(2σ2)
)

a.e.

This is derived using the fact that w′k(t) = 0 for all t
except t = 0, 1; we have set w′k(0) = w′k(1) = 0 in the
implementation. Let us point out that the discontinuity of
wk(t) at t = 0, 1 does not deteriorate the performance of
gradient descent. One can replace the function wk(t) with a
smooth function, however, at the cost of increased run time.

IV. NUMERICAL EXPERIMENTS

In this section, we compare the performance of our al-
gorithm BSSL0 with other CS/BCS algorithms described in
Section II. The MATLAB codes for the experiments are
available in [15].

A. Experiment 1: Binary Sparse Signal Reconstruction
In this experiment, we tested BSSL0 with randomly gen-

erated binary signals and compared it with other CS/BCS
algorithms. Random Gaussian matrices are considered for the
measurement matrix Φ ∈ R40×100, that is, all entries of Φ are
drawn independently from the standard normal distribution.
The parameter p is varied from 0 to 1 by step-size 0.05, and a
binary signal x ∈ {0, 1}100 is generated by drawing its entries
independently with P(xi = 1) = p and P(xi = 0) = 1 − p.
For Φ and x, we compute the measurement vector y = Φx
and run the respective algorithms introduced in section II
(BP, Boxed BP, SN, SAV, SL0, Boxed SL0, and BSSL0) to
obtain a solution vector z as a approximated reconstruction
of x. Additionally, we consider the Orthogonal Matching
Pursuit (OMP) [16] which is a fast greedy algorithm for sparse
signal reconstruction. The following are considered for the
performance evaluation: (i) Failure of Perfect Reconstruc-
tion (FPR): 0 if z = x (successfully recovered the signal
perfectly) and 1 if z 6= x (failed to recover perfectly); (ii)
Noise Signal Ratio (NSR): NSR = ‖x−z‖2

‖x‖2 ; (iii) Run time.
For each p, experiments are repeated 10, 000 times and the
results are averaged. For SN, we set the parameter λ to be 100
as fine-tuned in [6]. For BSSL0, we set σmin = 0.1, d = 0.5,
µ = 2, and L = 1000.

In Fig. 3, BSSL0 shows a better recovery rate than other
CS/BCS algorithms and also shows a run time comparable to
SL0.
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Fig. 3. Results for Experiment 1.

B. Experiment 2: Bitonal Image Reconstruction

As in [7], we considered reconstruction of the 37×37-pixel
bitonal image given in Fig. 4 (left). Following the same setup
in [7], we added to each pixel a random Gaussian noise with
mean-zero and standard deviation of 0.1, as shown in Fig. 4
(right).

Fig. 4. Original image (left) and the image corrupted by Gaussian noise
(right).

The noisy image is represented by a real-valued 37×37 matrix
X and we apply the discrete Fourier transform (DFT) to obtain

X̂ = WXW ∈ C37×37,

equivalently,

vec(X̂) = (W ⊗W ) vec(X) ∈ C1369,

where W = [ωk,`]K−1
k,`=0 with K = 37 and ω = e−2πi/K is

the K-point DFT matrix. As in [7], we randomly subsampled
vec(X̂) ∈ C1369 to obtain a half-sized vector y ∈ C685 and
set the measurement matrix Φ as the corresponding 685×1369
submatrix of W ⊗W . Fig. 5 shows the reconstructed images
by BP, SN, SAV, and BSSL0, all with entrywise rounding off
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to {0, 1}. For SN, an optimal tuning parameter λ was searched
from 50 to 1000 by stepsize 50 and the value λ = 800 was
chosen. For SAV and BSSL0, as in [7], we chose the parameter
p = P(xj = 0) = 0.5 as a rough estimate for the sparsity
of the bitonal image (see [7]). We set σmin = 0.01, d = 0.9,
µ = 2, and L = 3 for the parameters of BSSL0. The respective
run time for BP, SN, SAV, and BSSL0 are also given in Tab. I.

Fig. 5. Reconstructed images by BP (upper left), SN (upper right), SAV
(lower left), and the proposed method BSSL0 (lower right).

TABLE I
THE RUN TIME COMPARISON

Algorithm Run Time
Basis Pursuit 185.2044 seconds
SN 406.1007 seconds
SAV 191.5366 seconds
BSSL0 (proposed) 0.92577 seconds

V. CONCLUSION

In this work, we proposed a fast algorithm (BSSL0) for
reconstruction of binary signals which is based on the gra-
dient descent method and smooth relaxation techniques. We
showed that for binary signals our algorithm outperforms
other CS/BCS methods in terms of the recovery rate and
speed. Future work includes a detailed analysis of BSSL0
in stability/robustness and extensions to ternary and finite
alphabet signals.
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