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Abstract—During decades microwave imaging technology has
achieved remarkable progress especially by the introduction
of the compressed sensing (CS), wherein the sparse modeling
plays an important role. In practice, however, the sparsity is
not always existing. Even for the sparse case, the signal is
usually contaminated by non-sparse vectors, e.g. noise or model-
mismatch. Unfortunately, the energy or variance of these non-
sparse vectors are unknown, which is thus problematic for
the typical sparse decoders, e.g. BPDN. Alternatively, if the
sensing matrix holds the quotient property (QP), robust recovery
is still possible without giving noise information. Nevertheless,
matrices holding QP are usually the random matrix, e.g. Gaussian
matrix. Most sensing matrices are non-Gaussian, often are ill-
conditioned and anisotropic. In this paper, we will improve the
noise mitigation method (NMM), which was developed in our
previous work, to estimate the unknown non-sparse vectors, e.g.
noise or error by model mismatch. An iterative extension method
will be introduced to combat the dilemma of the basic NMM.

I. INTRODUCTION

Sparse signal contaminated by non-sparse signal is very
often to see in practice. For example, there is a noisy mea-
surement y ∈ Cm, which can be sparse represented in sensing
matrix A ∈ Cm×n by

y = Ax+ e, (1)

where x is k-sparse. If A holds the k-order null space property
(NSP) [1], a good estimation of x can be obtained by applying
BPDN (∆A

η (y))

x̂ = argmin
x

∥x∥1 s.t. ∥y −Ax∥2 ≤ η (2)

and ∥e∥2 < η. The same is true for the LASSO-solution
argminx ∥y − Ax∥22 + λ∥x∥1, where the regularization pa-
rameter is proposed to be λ ∼ σ∥A∗y∥∞. Clearly, there
is problematic if neither η nor σ is known. Alternatively,
if the sensing matrix A holds the QP, then BP (∆A

η=0(y))
method can recover the sparse vector robustly without the
noise information [3]. Unfortunately, this is not true for our
SFCW radar setting, wherein the sensing matrix is often ill-
conditioned and anisotropic.

Our proposal, NMM [2], which is based on the matrix
extension E, can improve the quotient bound (QB),

QAE
p = sup

e ̸=0
inf

e=Au+Ev

∥(u, v)∥p
∥e∥2

, (3)

particularly for QAE
2 = σ−1

min(AE), such that obtaining an error
bound [4]

∥x−∆AE
η=0(y)∥2 ≤

1 + C
√
m/k

σmin(ΘT )
∥e∥2, (4)

without deteriorating the NSP property much, and ΘT is a
square submatrix of compound matrix Θ = (A|E), where E
is weighted by a proper value. More details can be found in
our previous work [4].

A. Our contribution

Our work above is focusing on the QB property analysis,
where ∆AE

η=0(y) is applied. In this work, however, we do not
try to improve the QB (compound RIP) as much as possible,
instead a 2-stage BPDN recovery, namely

1) solving BP {min ∥z∥1 s.t. y = Θz} and getting a
noise estimation η = c∥EzE∥2 or variance σ2;

2) applying then BPDN {min ∥x∥1 s.t. ∥y−Ax∥2 ≤
η} or LASSO: {min ∥y −Ax∥22 + λ∥x∥1}.

where zE is the recovered subvector of z corresponding the
specific E space. The noise energy is estimated by η =
c∥EzE∥2. A similar idea can also be found in our previous
work [5]. However, this method has its difficult of constructing
an extension matrix with proper size. Extension matrix with
too large or too small size will deteriorate its performance.
In this paper, we will introduce an iterative matrix extension
method to deal with this dilemma.

B. Organization

This paper is organized as follows: First, we will review
the basic model of NMM as well as its dilemma, namely a
proper extension matrix construction. Then, an extended NMM
in anisotropic SFCW radar will be discussed for solving this
dilemma. Finally, we give both theoretical and practical tests
to show the feasibility of our proposals.

II. NOISE MITIGATED METHOD

A. basic NMM

Let Ω ⊂ [1 · · ·m], l = |Ω| and d ∈ Cm. If the m × l
extension matrix E has pairwise orthogonal columns, i.e., it
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can be written as E = WD with D = diag(dj)j∈Ω and some
W ∗W = Id, we get

E∗E = D∗D = diag(|dj |2)j∈Ω (5)

and otherwise zeros. Usually, we take W = UΩ where
A = USV ∗ is the singular value decomposition of A ,
S = diag(σ1, · · · , σm) are the singular values of A in
decreasing order, and U and V are the corresponding unitary
matrices. The set Ω denotes a set of l singular values, i.e.,
l = |Ω|.

In [5], we indicated that by iterative successive cancellative
projecting a white noise vector over A, the selected subspace
in i-th iteration corresponds that space by i-th singular value
of A statistically. Therefore, we set the extension matrix W
to be the subset corresponding the space, denoted as Us, by
the last l smallest singular values and weighted by ρ = σm−l,
where Us is the subspace of U in A = USV ∗.

Fig. 1. For example, singular values of A250×500 (blue) and the extension
matrix domain (red) of size l = 50, extension level l

m
= 50/250.

If A is extended with this special matrix

E = σm−lU(m−l+1)∼m = ρUs, (6)

and Θ = (A,E), then

E
{∥∥diag {ΘT eeTΘ

}∥∥
∞

}
=

∥∥diag {ΘTE
{
eeT

}
Θ
}∥∥

∞

=

∥∥∥∥diag{(
AT

ET

)
E
{
eeT

}
(A,E)

}∥∥∥∥
∞

=

∥∥∥∥diag{( AT

ET

)
UΣUT (A,E)

}∥∥∥∥
∞

(7)

It can be rewritten as[
diag(V SΣSV T )∞, diag(V SΣUTUsρ)∞

diag(ρUT
s UΣSV T )∞, diag(UT

s UΣρ2UTUs)∞

]

≤

[
∥V S∥22 σ2,

∥∥V SΩIρ
∥∥
2
σ2∥∥ΩIρSV T

∥∥
2
σ2,

∥∥ΩIρ
∥∥2
2
σ2

]

where ΩI = Im×m
(m−l+1)∼m is a partial identity matrix with

indexed diagonal elements from m− l + 1 to m. Then

=

[
∥V S∥22 ,

∥∥V S(m−l+1)∼mρ
∥∥
2∥∥ρS(m−l+1)∼mV T

∥∥
2
,

∥∥ΩIρ
∥∥2
2

]
σ2

≤

[
∥S∥22 ,

∥∥S(m−l+1)∼mρ
∥∥
2∥∥ρS(m−l+1)∼m

∥∥
2
,

∥∥ΩI
∥∥2
2
ρ2

]
σ2

since S(m−l+1)∼m ≤ ρ, thus S(m−i+1)∼mρ ≤ ρ2. Therefore,∥∥S1∼(m−l)

∥∥2
2
σ2 ≥

∥∥I(m−l+1)∼mρ
∥∥2
2
σ2

≥
∥∥S(m−l+1)∼mρ

∥∥
2
σ2

=
∥∥ρS(m−l+1)∼m

∥∥
2
σ2

(8)

This means, statistically the white noise successive cancellative
projection will be along the subspace corresponding singular
value transition in decreasing order.

Noting that by solving

{ẑA, ẑE} = argmin ∥z∥1 s.t. y = Θz (9)

for noise estimation, it is necessarily to fulfill

max
ei⊂E

∥∥∥A†
Λei

∥∥∥
1
< 1, (10)

such that no signal component1 will be project over the
extension matrix E, where AΛ is the support space of x. In
other words, E must be less correlated with AΛ in terms of
l1 norm.

Proof: Assuming that x is optimally spanned in AΛ with
y = AΛxΛ. To avoid an alternative y = Eaxa from E we may
use

∥xΛ∥1 =
∥∥∥A†

ΛAΛxΛ

∥∥∥
1
=

∥∥∥A†
Λy

∥∥∥
1
=

∥∥∥A†
ΛEaxa

∥∥∥
1

≤ max
ei⊂E

∥∥∥A†
Λei

∥∥∥
1
∥xa∥1

< ∥xa∥1 .

(11)

wherein the condition maxei⊂E

∥∥∥A†
Λei

∥∥∥
1
< 1 plays an impor-

tant role which completes the proof.

Finally, we can get a noise estimation by

η = c∥EẑE∥2 =
m

l
∥EẑE∥2. (12)

with the assumption of a white noise, i.e. c = m
l . Therefore,

BPDN can be conducted now by

min ∥x∥1 s.t. ∥y −Ax∥2 ≤ η. (13)

The difficulty in the basic NMM is that (10) must be always
fulfilled. It is problematic in practice, since we have no idea
about the signal support space. As a result, the construction of
the corresponding extension matrix must be very careful. This
means, if E with too large size l, there is a danger that signal
components will also be caught by E. If E with too small
size l, noise estimation performance will be deteriorated. The
noise estimation performance of the basic NMM is shown in
figure 2. One can notice that the proper extension size is signal
sparsity dependent.

1This is also the condition for the so-called off-support knowledge, i.e. no
signal will be located on E.

(c) EUSASIP 2018 / CoSeRa 2018

2018 5th International Workshop on Compressed Sensing applied to Radar, Multimodal Sensing, and Imaging (CoSeRa)



Fig. 2. MSE (dB) of noise estimation | ∥ê∥2−∥e∥2
∥e∥2

|, A60×120

B. extended NMM

In this subsection, we will introduce an iterative extension
method to deal with the dilemma in the basic NMM such that
an extension with optimal size is possible.

First of all, I give a short review of how the basic SFCW
works. Let’s take the 1D distance measurement as an example.
We collect the data in the frequency domain. Assuming that
there is a complex2 signal plane wave of frequency f1 as
transmit signal

xs(t) = ej(2πf1t+θ). (14)

The effective reflected (Hilbert transformed) signal from one
object with time delay τ is

xr(t) = α1e
j[2πf1(t−τ)+θ]. (15)

Note that, in a linear time-invariant system, the input frequency
f1 has not changed, only the amplitude and the phase angle
of the sinusoid has been changed by the system. Thus, the re-
ceiver collects the signal, multiplies by the complex conjugate
replica of the transmitted signal, yielding

y(f1) = α1e
j[2πf1(t−τ)+θ]e−j(2πf1t+θ) = α1e

−j2πf1τ . (16)

Thus, for multiple frequencies and multiple objects system
there is

y(fi) =
N∑

k=1

αi,ke
−j2πfiτk , (17)

where fi ∈ [f1, f2, · · · , fn] and k ∈ [1, N ] is the index of
objects.

Clearly, τk is a continuous parameter. In practice, however,
we estimate τk in a discrete domain and assume that τk ∈

2In practice, it is only the real part as the radiation signal in the free space.
The main reason one would choose to work with complex exponential form
of plane waves is that complex exponentials are often algebraically easier
to handle than the trigonometric sines and cosines. Specifically, the angle-
addition rules are extremely simple for exponentials.

[0,∆τ, 2∆τ, · · · , (n−1)∆τ ]. Therefore, y(fi) can be spanned
in the following domain, denoted as A0

1, e−j2πf1∆τ , e−j2πf12∆τ , · · · e−j2πf1(n−1)∆τ

1, e−j2πf2∆τ , e−j2πf22∆τ , · · · e−j2πf2(n−1)∆τ

...
...

... · · ·
...

1, e−j2πfn∆τ , e−j2πfn2∆τ , · · · e−j2πfn(n−1)∆τ

 .

(18)

Since the delay τk does not live in the absolute phase
of the received signal, one can then replace the frequencies
[f1, f2, · · · , fn] by [0,∆f, · · · , (n − 1)∆f ]. Finally, A0 can
be rewritten as

A0 =


1, 1, 1, · · · 1
1, W, W 2, · · · W (n−1)

...
...

... · · ·
...

1, Wn−1, W 2(n−1), · · · W (n−1)(n−1)

 ,

(19)

where W = e−j2π∆f∆τ . To avoid the ambiguity of the phase
rotation, we limit the phase within [0, 2π). If there are n
samples, then

A0 =


1, 1, 1, · · · 1

1, W0, W 2
0 , · · · W

(n−1)
0

...
...

... · · ·
...

1, Wn−1
0 , W

2(n−1)
0 , · · · W

(n−1)(n−1)
0


(20)

and W0 = e−j2π( 1
n ).

Clearly, A0 in (20) is a DFT matrix and the received y(f)
can be given by

y(f) =A0ξ(τ)

=FT{ξ(τ)} = ξ̄ ⊙ FT{h(τ)}
=Ah(τ)

(21)

where ξ is the object response in the time domain and ξ̄ is its
frequency response, h(τ) is the channel impulse response. To
note is that ξ̄ is usually not flat due to e.g. the influence of the
antenna, and therefore anisotropic (e.g. see figure 1).

By applying the basic NMM, one can get a robust estima-
tion of the channel impulse response h(τ). Namely,

(∆AE
η=0(y)) : {ẑE} = min ∥z∥1 s.t. y = (A|E)z

η̂ =
m

l
∥EẑE∥2,

(∆A
η̂ (y)) : {ĥ} = min ∥h∥1 s.t. ∥y −Ah∥2 ≤ η̂.

(22)

Nevertheless, the selection of an extension matrix E with a
reasonable size is difficult.

1) Iterative extension: Recall (10) it is clear that E must be
less correlated with signal space especially the support space
AΛ. Generally, an extension with relative high dimension can
achieve more accurate noise estimation, yet it will be penalized
by capturing the signal as well.

Regarding the noise3 estimation in (12), the expected value
of η is less dependent on the size of l, if (10) is fulfilled. We

3If the additive noise is white.
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denote noise estimation by E of size li as

ηli =
m

li
∥Eli ẑE∥2 ≈ mēw = m

∥e∥2
m

, (23)

where ēw is the expectation of ∥e∥2 on each orthogonal coor-
dinate. For given SNR and different measurement realizations
we have

Ej{η(j)li
} = Ej{∥e(j)∥2}, (24)

where j is the realization index, E is the expectation operator.
At the same time, there is

Eli{ηli} = ∥e∥2, (25)

over different parallel estimations and li ∈ [1,m].

Therefore, if the signal x is sparse, by iteratively increasing
the value of li and controlling the variance of {ηli}, i.e.
varli{ηli}, we can get a reasonable size for extension matrix
without capturing much signal by E. In our case, we set the
extension update criterion

ηli
ηl1

≤ v, (26)

where v is a parameter for estimation accuracy. This means, if
ηli

ηl1
remains relative small, the recovered vector ẑE does not

contain signal in high probability. In iterations, the extension
level li/m will be increased, if (26) is fulfilled. An overview
of the extended NMM is follows:

1) {ẑE} = ∆
AEl1
η=0 (y), m

l1
= 0.05, ηl1 = m

l1
∥El1 ẑE∥2,

2) loop li (i ≥ 1),
a) m

li
= m

li
+∆(l/m),

b) {ẑE} = ∆
AEli
η=0 (y),

c) ηli =
m
li
∥Eli ẑE∥2,

if ηli

ηl1
> v, end loop;

3) {ĥ} = ∆A
η̂li−1

(y)

III. NUMERICAL RESULTS

A. theoretical tests

As for the basic NMM, we also give some theoretical
evaluations for the extended NMM. Assuming a Gaussian
matrix Am×n of size 60 × 120, the received signal y, which
is spanned in A, is added with white noise of SNR=20dB.
For non-sparse vector estimation, the extension matrix E
starts with a small extension level l/m = 0.05 (to fulfill the
condition in (10) in high probability) and is updated with
step size ∆(l/m) = 0.1 and v = 2. In this manner, the
corresponding extension level is determined automatically. The
performance is given by 500 realizations4 for each sparsity.

In figure 3, one can notice that the extended NMM outper-
forms the basic NMM much for the sparse case. Regarding
the non-sparse case, there will be signal components also
recovered on the extension matrix. In this case, the non-sparse
vectors are dominated by signal. Good MSE with respect to
noise estimation does not indicate a better performance of
relevant vector estimation. Noting that both basic NMM and
extended NMM provide a confidence level for a stable relevant

4Each time with a new Gaussian matrix A.

vector recovery. The difference lies that the extended NMM
is more conservative, i.e. consider more signal energy as non-
sparse vectors. Finally, its estimated error with respect to noise
is worse, yet for the relevant vector identification it is in turn
more favorable (stable).

Fig. 3. MSE of noise estimation, | ∥ê∥2−∥e∥2
∥e∥2

|

In figure 4, there is the corresponding the average extension
level in terms of the signal sparsity. The extension level in the
sparse case is higher than that for the less sparse case. This
means that signal components distribution in the singular value
domain is less uniform. Moreover, signal are more located over
directions with larger singular values.

Fig. 4. Average extension level l/m

B. field tests

In this subsection, we will show some practical tests. A
scenario is shown in figure 5, which is measured by SFCW
principle. There are totally 1001 frequency points at range
[0.5, 3] GHz with scan step size of 5 cm in the azimuth
direction. Due to the fact that our main scenario is located
within particular zone in the time domain, instead of the whole
vector of dimension 1001 we select only a small fraction, i.e.
dimension of 39, in the time domain. Besides, over-sampling
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is applied. As a result, the corresponding sensing matrix is of
size A39×94.

Regarding the non-sparse signal in this real scenario there
are not only background noise existing, but a lot of compress-
ible signal components, model mis-match components etc..

Fig. 5. Scenario (man-made dihedral by soil, metallic plate, sphere, and rods)

In figure 6, there is the raw image, where both relevant
and non-sparse signal are existing. After a non-sparse signal
estimation by the extended NMM, the relevant information by
this scenario is automatically highlighted (see figure 7) and a
lot of sidelobes as well as irrelevant signal are disappeared.
Noting that the suppressed ”irrelevant” components could still
be reasonable information. However, these components are not
stable with respect to the applied inverse system. Thus, they
are considered as irrelevant (or non-stable) signal.

Fig. 6. Raw image

IV. CONCLUSION

In this paper, we introduced an extended NMM method for
stably recovering relevant signal in SFCW radar. It can solve
the practical dilemma for extension matrix construction. The
basic idea of NMM is constructing a subspace, which is less
correlated with signal (support) space, to sense the non-sparse
signal, e.g. noise. A stable BPDN is then possible based on
the estimated noise energy. The difficulty of the basic NMM
is a reasonable and stable extension matrix construction.

In our extended NMM, we use an iterative extension
principle, which is based on the ergodic property of the noise,

Fig. 7. Extended NMM

to get a reasonable extension automatically, i.e. achieve more
accurate noise estimation while keeping signal projection on
extension matrix small. So far, our research focus is on the
uniformly distributed non-sparse vector, e.g. white noise, in
the singular value domain. The question of how to combat
non-sparse vectors with non-uniform distributed property is
still open, and it will be discussed in our future work.
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