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Abstract—In this article, we summarize our findings concern-
ing signal estimation from undersampled Gaussian measurements
under the assumption of a cosparse model. Based on generalized
notions of sparsity, we obtain a novel recovery guarantee for
the `1-analysis basis pursuit, enabling accurate predictions of its
sample complexity. The corresponding bounds on the number of
required measurements do explicitly depend on the Gram matrix
of the analysis operator and therefore particularly account for
its mutual coherence structure. Our findings defy conventional
wisdom which promotes the sparsity of analysis coefficients as
the crucial quantity to study. In fact, this common paradigm
breaks down completely in many situations of practical interest,
for instance, when applying a redundant (multilevel) frame as
analysis prior. A detailed exposition of the results can be found
in our original work, which contains proofs for all statements
and extensive numerical experiments.

I. INTRODUCTION

Ever since Candès, Donoho, Romberg, and Tao initiated
the field of compressed sensing ([1], [2]), sparsity has become
a fundamental model in many different signal processing tasks.
The standard setup in this field considers the problem of
reconstructing an unknown sparse signal vector x∗ ∈ Rn from
non-adaptive, linear measurements of the form

y = Ax∗ + e,

where A ∈ Rm×n is a known measurement matrix and
e ∈ Rm captures potential distortions, typically due to noise.
Even in highly underdetermined situations where m � n,
the methodology of compressed sensing allows for a perfect
recovery of x∗ by employing sparsity promoting priors. A
widely-used algorithmic approach suggests to solve the so-
called basis pursuit

min
x∈Rn

‖x‖1 s.t. ‖Ax− y‖2 ≤ η, (BPη)

where η ≥ 0 is chosen such that ‖e‖2 ≤ η. The distinguished
feature of (BPη) is the use of the `1-norm as objective function,
which is known to encourage sparse solutions. One of the key
findings in compressed sensing is that (BPη) indeed recovers
an S-sparse vector x∗ (i.e., ‖x∗‖0 := |supp(x∗)| ≤ S) with
the optimal sampling rate of m = O(S · log(2S/n)), provided
that the measurement design A is generated according to an
appropriate random distribution.

Unfortunately, the assumption that x∗ is sparse by itself is
typically not satisfied in most real-world applications. How-
ever, it is widely accepted that many signals of interest can
be sparsely represented with regard to a suitable transforma-
tion, i.e., x∗ = Dz for a (possibly redundant) dictionary
D ∈ Rn×N and a sparse coefficient vector z ∈ RN . This
prior information is then utilized in the modified basis pursuit

min
z∈RN

‖z‖1 s.t. ‖ADz − y‖2 ≤ η, (BPSDη )

which is typically referred to as the synthesis formulation of
compressed sensing.

In this work, we study the related, yet fundamentally
different analysis sparsity model (also known as cosparse
model), which has gained increasing attention within the past
years ([3], [4], [5]). Instead of asking for a synthesis sparse
representation of x∗, we test (“analyze”) the signal with a
collection of analysis vectors ψ1, . . . ,ψN ∈ Rn, i.e., one
computes

Ψx∗ = (〈ψ1,x
∗〉, . . . , 〈ψN ,x∗〉) ∈ RN ,

where the matrix Ψ := [ψ1 . . .ψN ]T ∈ RN×n is called the
analysis operator. If Ψ is able to reflect the underlying struc-
ture of x∗, one might expect that these analysis coefficients
are dominated by only a few large entries. This assumption
is incorporated in the following generalization of (BPη) that
is typically referred to as the analysis basis pursuit (or `1-
analysis minimization):

min
x∈Rn

‖Ψx‖1 s.t. ‖Ax− y‖2 ≤ η. (BPΨ
η )

It was first noted in the seminal work [6] that, despite
their algebraic similarities, the synthesis- and analysis-based
programs are in fact very different if the involved operators Ψ
andD are redundant. While the intuitive synthesis formulation
(BPSDη ) has established itself as the predominant methodology,
it turned out that (BPΨ

η ) is surprisingly effective for numerous
problem settings, such as in total variation minimization [7]
or for multiscale transforms in classical signal and image pro-
cessing tasks ([8]). In many situations of interest, one can even
observe that the analysis formulation outperforms its synthesis-
based counterpart ([6], [9]). However, despite this empirical
success, theoretical properties of the analysis basis pursuit
remain largely unexplored and “its rigorous understanding is
still in its infancy” [5, p. 174].
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In this work, we summarize some of our recent advances
on the sample complexity of (BPΨ

η ) as presented in the
original paper [10]. In Section 2, we will first discuss the
dominant sparsity-based interpretation of the analysis basis
pursuit (BPΨ

η ) and show a numerical example indicting that
this common paradigm does not lead to a sound theoretical
foundation of redundant transforms. Our main result is detailed
in Section 3 together with a numerical verification of its
predictive power. In the last section, we finally conclude with
a brief discussion of available extensions in [10].

II. PREVIOUS APPROACHES AND OPEN PROBLEMS

In order to achieve recovery of x∗ via (BPΨ
η ), the essential

task is to come up with an analysis operator Ψ that results in
a coefficient vector Ψx∗ of “low complexity”. Inspired by the
classical setup of compressed sensing, where Ψ is simply the
identity matrix, a large part of the pertinent literature is build
upon the assumption that Ψx∗ is (almost) sparse. Although
many of these approaches rely on different proof strategies,
e.g., the D-RIP [3] or conic geometry [5], they eventually
promote results of a very similar type: Recovery of x∗ ∈ Rn
via (BPΨ

η ) succeeds if the number of measurements obeys

m ≥ C · S · PolyLog( 2N
S ), (1)

where S := ‖Ψx∗‖0 and C > 0 is a constant that might
depend on Ψ. Although such a sparsity-based approach is
appealing due to its simplicity and the fact that it is consistent
with the classical setup, it remains unclear whether it is
sufficient for a general foundation of (BPΨ

η ). The notion of
analysis sparsity is merely determined by the support of Ψx∗,
which in turn does not take into account the coherence pattern
of the individual analysis vectors ψ1, . . . ,ψN ; in other words,
the underlying “geometry” of Ψ is ignored.

As an illustration of our concern, let us consider a simple
example: Figure 1 shows the results of a numerical simulation
that reconstructs a block-signal (see Figure 1(a)) using three
different analysis operators. The plot of Figure 1(b) exhibits
the phase transition behavior of (BPΨ

η=0) for a redundant,
discrete Haar wavelet transform Ψrdwt and the analysis op-
erator Ψirdwt associated with the inverse wavelet transform.
Although the sparsity S = 906 is exactly the same in both
cases, their recovery capability indeed differs dramatically!
We conclude that just investigating the sparsity does by far
not explain why the transition of Ψirdwt happens much
earlier (m ≈ 85) than the one of Ψrdwt (m ≈ 240). Even
more striking, the prediction of (1) deviates from the truth
by orders of magnitudes. The plot of Figure 1(c) reveals
another insight: While (1) is reliable for an orthonormal Haar
wavelet transform Ψdwt ∈ Rn×n, a comparison with the
actual recovery rate of (BPΨirdwt

η=0 ) indicates that redundancy
can be beneficial in the analysis model. Finally, it is also worth
mentioning that a compressibility argument does not “save
the day” here: Figure 1(d) demonstrates that the transition
takes place far before the remaining coefficients would be
negligibly small. We emphasize that the above example is not
too specific or artificial, but rather illustrates a scenario that
often occurs in applications: Due to linear dependencies within
Ψ, the analysis sparsity oftentimes cannot become arbitrarily
small. For instance, if Ψ corresponds to a highly redundant

dictionary, one typically has S � n, whereas the true sample
complexity is relatively small (below the space dimension n).

Finally, let us point out that another influential approach to
the analysis formulation is given by [4], where similar concerns
are raised and the cosparse analysis model is introduced. A
remarkable observation of [4] is that the location of vanishing
coefficients in Ψx∗ is the driving force behind the analysis
formulation, rather than the number of non-zero components.
This viewpoint naturally leads to the so-called cosparse signal
model, which is typically described by union-of-subspaces.
However, this methodology is also not capable of explaining
the example of Figure 1(b), since for both frames the cosparsity
L := N − S and the underlying cosparse structure coincide;
see [10] for details. Therefore [4] neither provide an accurate
sampling rate for (BPΨ

η ) nor can it explain the performance
gap between both examples. The interested reader is referred
to [10, Section 4] for an extensive discussion of the related
literature. We conclude this section by raising the following
fundamental question which we aimed to answer in [10]:

If (co-)sparsity does not fully explain what is hap-
pening, which general principles lead to success or
failure of the analysis basis pursuit (BPΨ

η )?

III. MAIN RESULT

Let us begin by stating the general assumptions for our
recovery analysis of (BPΨ

η ). For the sake of brevity, we
restrict ourselves to the prototypical case of noiseless Gaussian
measurements, but remark that the results presented below also
hold true for noisy sub-Gaussian measurements [10].

Model 1 (Linear Gaussian Measurements). Let x∗ ∈ Rn be
a fixed signal vector. The measurement vectors a1, . . . ,am ∈
Rn are assumed to be independent copies of a standard Gaus-
sian random vector a ∼ N (0, In). These vectors form the
rows of the measurement matrix A := [a1 . . .am]T ∈ Rm×n.
The actual measurements of x∗ are then given by

y := Ax∗ ∈ Rm.

In the noiseless case, the analysis basis pursuit then takes
the form

min
x∈Rn

‖Ψx‖1 s.t. Ax = y, (BPΨ
η=0)

so that we can even hope for an exact retrieval of x∗ ∈ Rn
from y. Indeed, the recent work of [11] has made the re-
markable observation that a convex program of the above
type typically undergoes a sharp phase transition as m varies:
Recovery of x∗ fails with overwhelmingly high probability
if m is below a certain threshold. But once m exceeds a
small transition region, recovery succeeds with overwhelm-
ingly high probability; see Figure 1(b) for an example. This
minimal number of required measurements (also depending
on the desired probability of success) is often referred to
as the sample complexity (or optimal sampling rate) of an
estimation problem. Before stating an upper bound on the
sample complexity of (BPΨ

η=0), we first need to introduce more
notation related to the analysis operator:

Definition 2. (1) The matrix Ψ = [ψk,j ] ∈ RN×n is called an
analysis operator (or analysis matrix) if none of its rows equals
the zero vector. The rows of Ψ, denoted by ψ1, . . . ,ψN ∈ Rn,
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(a) Signal vector x∗ ∈ R256. (b) Success rate of exact recovery via (BPΨrdwt
η=0 )

and (BPΨirdwt
η=0 ), respectively.

(c) Success rate of exact recovery via (BPΨdwt
η=0 ). (d) Sorted and `1-normalized magnitudes of the

coefficients Ψrdwtx∗ and Ψirdwtx
∗.

Figure 1. The phase transition of (BPΨ
η=0) for wavelets in 1D with noiseless Gaussian measurements (η = 0), see [10] for further details.

are called the analysis vectors. Moreover, we define the Gram
matrix of Ψ as

G = [gk,k′ ] := ΨΨT = [〈ψk,ψk′〉] ∈ RN×N .

(2) The analysis coefficients of a vector x∗ ∈ Rn (with respect
to Ψ) are given by

Ψx∗ = (〈ψ1,x
∗〉, . . . , 〈ψN ,x∗〉) ∈ RN .

The analysis support of x∗ is denoted by S := supp(Ψx∗) ⊂
[N ], and if S = |S|, we say that x∗ is S-analysis-sparse.
Analogously, we call the complement Sc := supp(Ψx∗)c ⊂
[N ] the analysis cosupport of x∗ and speak of an L-analysis-
cosparse vector if L = |Sc| = N − S.

Let us continue by defining three generalized notions of
(co-)sparsity, which form the key ingredients of our bounds
on the sampling rate:

Definition 3 (Generalized (Co-)Sparsity). Let Ψ ∈ RN×n
be an analysis operator and let x∗ ∈ Rn. We define the
generalized sparsity of x∗ (with respect to Ψ) by

S̃ :=
∑
k,k′∈S

sign(〈ψk,x∗〉) · sign(〈ψk′ ,x∗〉) · gk,k′ .

Moreover, we introduce the terms

L̃ :=
∑

k,k′∈Sc

g2k,k′√
gk,k · gk′,k′

, L̃d :=
∑
k∈Sc

√
gk,k ,

which are both referred to as the generalized cosparsity of x∗.

Considering the canonical choice of an orthonormal ba-
sis, it becomes actually clear why we speak of generalized
sparsity: Since G = ΨΨT = In in this case, one obtains
S̃ = S = ‖Ψx∗‖0 and L̃ = L̃d = L = n − S. Hence, the
respective parameters of Definition 3 precisely coincide with
their traditional counterparts. In general, this correspondence
is more complicated. The definition of the generalized sparsity
S̃ still operates on the analysis support of x∗, but also involves
a weighted sum over all Gram matrix entries associated with
S. The same holds true for the generalized cosparsity term L̃,
respectively. Such an incorporation of the off-diagonal entries
of G is in fact quite natural because, to a certain extent, it
reflects the mutual coherence structure of the analysis vectors
ψ1, . . . ,ψN .

Our actual goal is to come up with an upper bound on the
sample complexity of (BPΨ

η=0) that is tight in many situations.
For this purpose, let us introduce the following function,
which essentially determines the sampling rate proposed by
Theorem 5 below:

Definition 4. Let Ψ ∈ RN×n be an analysis operator and let
x∗ ∈ Rn with x∗ 6∈ ker Ψ. Then, we define the sampling-rate
function of Ψ and x∗ by

M(Ψ,x∗) :=

n−
(L̃d)

2

L̃
· Φ
(
S̃
L̃

)
, if Sc 6= ∅,

n, otherwise,

where

Φ(ρ) := erf
(
h−1(ρ)√

2

)
, ρ > 0,
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Figure 2. The graph of Φ. This function is strictly monotonically decreasing
(in particular, limρ↘0 Φ′(ρ) = −∞), and at its boundary points, we have
limρ↘0 Φ(ρ) = 1 and limρ→∞ Φ(ρ) = 0.

with

h : (0,∞)→ (0,∞), τ 7→
√

2
π
e−τ

2/2

τ + erf( τ√
2
)− 1

and erf(τ) := 2√
π

∫ τ
0

exp(−x2) dx denoting the error func-
tion.

It is not hard to see that the functions h, h−1, and Φ —
each one mapping from (0,∞) to (0,∞) — are well-defined,
which also implies the well-definedness of M(Ψ,x∗) and in
particular that M(Ψ,x∗) ≥ 0 [10, Appendix A.3]. Figure 2
shows the graph of Φ, visualizing how the ratio S̃/L̃ affects
the sampling-rate function.

We are now ready to state our main result:

Theorem 5 (Exact Recovery via (BPΨ
η=0)). Assume that

Model 1 is fulfilled. Let Ψ ∈ RN×n be an analysis operator
such that x∗ 6∈ ker Ψ. Then for every u > 0, the following
holds true with probability at least 1− e−u2/2: If the number
of measurements obeys

m >
(√
M(Ψ,x∗) + u

)2
+ 1, (2)

then (BPΨ
η=0) recovers x∗ exactly.

Theorem 5 gives a precise answer to the question raised in
the introduction of this work: Roughly speaking, reconstruction
succeeds with high probability as m slightly exceeds the
sampling-rate function M(Ψ,x∗). Unlike many approaches
from the literature, the statement of Theorem 5 is highly
non-uniform: the condition of (2) does not only involve the
analysis sparsity S = ‖Ψx∗‖0, but explicitly depends on
the support S as well as on the sign vector sign(Ψx∗). We
refer the interested reader to the experiments in [10], which
demonstrate that the performance of (BPΨ

η=0) is oftentimes not
fully explainable by means of S alone, even if Ψ is fixed.
Remark. (a) The assumption of x∗ 6∈ ker Ψ in Theorem 5 is
not very restrictive and merely of technical nature. If x∗ ∈
ker Ψ, the analysis basis pursuit (BPΨ

η=0) uniquely recovers
x∗ if, and only if, ker Ψ ∩ (x∗ + kerA) = {x∗}.

(b) Since M(Ψ,x∗) ≤ n, the condition of (2) does not lead
to situations where m needs to be much larger than n in
order to achieve successful recovery. In contrast, this simple
observation is not always reflected by a naive bound of the
form (1), at least when the domain of analysis coefficients
RN is much higher dimensional, i.e., N � n.

(c) The function Φ is quite simple from an analytical perspec-
tive, yet it remains somewhat uninformative. Thus, accepting
a certain loss of accuracy, the following upper bound gives
further insight into its asymptotical behavior: Under the as-
sumptions Theorem 5, we have that (cf. [10, Proposition 2.7])

M(Ψ,x∗) ≤ min
{
n− L̃2

d

L̃
+ ( L̃d

L̃
)2 · [2S̃ · log( S̃+L̃

S̃
) + S̃],

n− 2
π ·

L̃2
d

S̃+L̃

}
.

(d) The proof strategy of Theorem 5 is based on deriving a
sophisticated, non-trivial upper bound on the Gaussian mean
width of the descent cone of the `1-analysis functional. We
emphasize that our careful analysis is particularly consistent
with the standard setup of compressed sensing, where Ψ is an
orthonormal basis, which can be easily seen from the bound
in (c). This important feature is one of the key differences to
the related work of [12], which follows a similar strategy. We
refer to [10, Section 4.4] for a detailed comparison of both
results.

While the prediction of Theorem 5 is certainly an upper
bound for the number of required measurements, it is not
clear how tight this estimate is. This issue unfortunately turns
out to be very challenging, and in general, we do not have
a quantitative error estimate for our prediction. However, we
will give numerical evidence for its tightness in the following
and refer the interested reader to [10] for a more detailed
discussion.

Numerical Examples: To illustrate the predictive power of
Theorem 5, we first revisit the example of Figure 1. For each
of the three analysis operators, the prediction of the sampling
rate is indicated by colored dots on the x-axis. Figure 1(c)
confirms that in the case of an orthonormal basis, we reproduce
the known results of [11], showing that our approach is
consistent with the classical theory of (BPη). On the other
hand, Figure 1(b) reveals that our framework also allows us to
predict the phase transition for highly redundant Haar wavelet
frames. While the standard theory based on (co-)sparsity is
not able to explain the observed performance gap, the bound
of Theorem 5 is fairly accurate for each of the two redundant
frames.

In the previous example, the signal remained fixed and we
evaluated the sampling rate for different frame instances. In
a second experiment, we fix the “better” frame (namely the
one of the inverse wavelet transform) and consider signals
of different complexity. Since the redundant inverse Haar
wavelet transform is well suited for piecewise constant sig-
nals, the number of their discontinuities serves as measure
of complexity, denoted by STV. Interestingly, the plots of
Figure 3 resemble classical phase transitions based on the usual
notion of sparsity, e.g., as reported in [11]. This observation
is somewhat surprising because the (averaged) coefficient
sparsity S = ‖Ψirdwtx

∗‖0, displayed on the top of the plots in
Figure 3, appears detached in our setting. Regarding prediction
accuracy, we can conclude that M(Ψirdwt,x

∗) captures the
location of the phase transition fairly well. To the best of our
knowledge, the only directly comparable result is given by
[12, Theorem 3.3], which leads to much worse predictions.
We refer to [10, Section 3] for a detailed documentation of
both numerical experiments.
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(a) n = 128 (b) n = 512.

Figure 3. Phase transition plots for piecewise constant signals analyzed with Ψirdwt (STV is the number of discontinuities of x∗ ∈ Rn). The blue and orange
curves are obtained by computing the empirical mean of the sampling-rate function M(Ψirdwt,x

∗) and the one of [12, Thm. 3.3] for each STV, respectively.

IV. CONCLUSION AND OUTLOOK

A key insight of this work is that the classical notions
of (co-)sparsity are not sufficient for explaining when the
analysis basis pursuit (BPΨ

η ) is able to recover a given signal
of interest. In contrast, our theoretical framework is based on
the novel concept of generalized (co-)sparsity that explicitly
takes into account the mutual coherence structure of the
frame atoms, which in fact is a missing feature of many
traditional approaches. These parameters resemble well-known
principles and are particularly consistent with the standard case
of orthonormal bases. Our main result, Theorem 5, states a
non-uniform and non-asymptotic upper bound on the sampling
rate. It is explicit with respect to the analysis operator and
simple to compute numerically. The predictive power of this
recovery guarantee is demonstrated by two different experi-
ments, considering redundant Haar wavelets. But we wish to
emphasize that our analysis is generic in the sense that it is
not tailored to a specific type of analysis operator and applies
to a general setting.

Our previous work [10] contains several extensions of
the prototypical situation of noiseless Gaussian measurements:
The presented results also hold true in the presence of measure-
ment noise and for sub-Gaussian measurement ensembles. Fur-
thermore, we derived a simplified bound that is more explicit
than the sampling rate M(Ψ,x∗); see [10, Proposition 2.7].
Of great importance for practical applications is the extension
to stable recovery: It is usually not realistic to assume that
Ψx∗ contains more than a very few zero entries. Instead, the
coefficient vector is often decaying rapidly, such that many
coefficients are close to zero but do never completely vanish.
In such a situation, perfect recovery cannot be expected,
but one can still hope for an accurate reconstruction from a
relatively small number of measurements. However, the bound
of Theorem 5 is overly pessimistic in such such situations,
yielding an estimate close to the ambient dimension n. In [10,
Theorem 2.8], we have relaxed the above framework to account
for this phenomenon: It allows us to obtain predictions of the
sampling rate based on a nearby surrogate vector with “sparse”
analysis coefficients, by accepting a small approximation error.
Finally, we point out that this strategy is quite different from
previous compressibility arguments which mainly focus on
thresholding the analysis coefficients rather than approximating
the signal vector itself.
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