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Abstract—Compressed Learning (CL) is a machine learning
framework for a direct inference from a small number of
compressive measurements without a perfect time-consuming
signal reconstruction. However, in many computer vision and
signal processing applications, e.g. image compression, besides
the inference task, the signal reconstruction plays an impor-
tant role. This paper aims to propose a new deep neural
network (DNN) framework for performing simultaneously both
compressed learning and signal reconstruction in two separate
phases. This approach brings more advantages upon training
and computation time with some benefits of compressed learning
point of view. Through experiments on MNIST and CIFAR-
10 datasets, our proposed model is proven to bring higher
classification and image recovery performance.

Index Terms—compressed sensing, deep learning, classification,
compressed learning, mutual coherence.

I. INTRODUCTION

Recent compressed sensing (CS) studies have brought some
advances in many applications of computational imaging and
signal processing, e.g. image compression [1], lensless imag-
ing [2], where the data xxx ∈ RN can be represented as a
sparse vector ccc ∈ RL in a high dimensional space xxx = ΨΨΨccc
where ΨΨΨ is spasifying dictionary matrix. CS technique offers
a framework for reconstructing this sparse vector that relies on
linear dimensionality reduction [3], [4]. Instead of acquiring
the data xxx directly as the traditional measuring method, it
carries out M < N linear compressive measurements

yyy = ΦΦΦxxx = ΦΦΦΨΨΨccc (1)

using a sensing matrix ΦΦΦ ∈ RM×N where yyy ∈ RM is referred
as the measurement vector. The ratio R = M/N is referred as
sensing rate of a CS framework. Finding the sparsest solution ccc
of Eq 1 leads to the recovery of the required data xxx. Currently,
compressive imagers, e.g. single-pixel cameras (SPC) [5], are
practical systems producing compressive measurements for
extracting visual information about a scene. Lensless imaging
[2] is a typical application using such coded measurements for
imaging at different resolutions or 3D imaging. Apparently,
these compressive measurements become more popular in
many practical computer vision or signal processing applica-
tions.

Compressed learning (CL) [6] aims to construct a machine
learning model for inference tasks from compressive measure-
ments without a perfect signal reconstruction. In principle, it is
beneficial in both points of view of compressed sensing (CS)
with reduced computation cost and machine learning (ML)
with reduced training and inference time. Many publication
have successfully used Support Vector Machine (SVM) [6]
or further DNN [7], [8] for the realization of CL approach.
Similarly, this paper proposes a new DNN model for a
compressed classification learning. However, it comprises a
less amount of hidden layers and hence potentially acquires
shorter training or classification time. Furthermore, besides
inference tasks, our proposed DNN is aimed at higher image
recovery performance. Our idea approaches to many practi-
cal applications, e.g. image compression [1], which require
both inference and image reconstruction tasks simultaneously
from compressive measurements. A simple solution for this
approach is to reconstruct the images before using them
into the learning systems. However, this process consumes
much abundant computation time for image recovery if we
are only interested in inference results at one time point. In
such scenarios, our model aims to perform these two tasks
separately. The contributions of this paper is designing a DNN
architecture for higher performance of both classification and
image reconstruction based on compressive measurements. To
the best of our knowledge, there has been no such a framework
reported yet.

The outline of this paper is as follows: Section II mentions
some state-of-art studies regarding CS and CL frameworks.
Section III-A proposes a DNN with smaller computational
cost. Besides, Section III-B modifies the loss function of
the proposed DNN for optimizing the sensing matrix. Subse-
quently, Section IV provides experimental results to show the
advantages of two proposed approaches for higher classifica-
tion accuracy and image reconstruction performance. Section
V concludes the paper.

II. RELATED WORK

A. Compressed sensing

For a fast processing, solving the sparse problem respect to
Eq 1 is a complex task and hence relaxed to the following
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l1-minimization program:

ĉcc = argmin
ccc
||ccc||1 subject to yyy = ΦΦΦΨΨΨccc (2)

There are some restricting conditions, e.g. null space prop-
erty (NSP), restricted isometry property (RIP), coherence
property[3], [4], on the sensing and dictionary matrices AAA =
ΦΦΦΨΨΨ to guarantee for the coincidence between l0-norm and l1-
norm solutions. In this paper, we use mutual coherence

µ(AAA) = max
1≤i 6=j≤N

aaaiaaaj
||aaai||2||aaaj ||2

(3)

as the maximum value of inner products between two different
columns of matrixAAA, for designing sensing matrix ΦΦΦ. The goal
of this design work is to minimize this mutual coherence for
a higher signal reconstruction performance of CS framework
[9]. Notably, the set of all above inner products forms Gram
matrix of matrix AAA. Additionally, there is a lower bound on
the number of compressive measurements [10]:

M ≥ CKLµ2(AAA) log(L/γ) (4)

for fixed values of γ < 1, C, C ′, to guarantee for an exact K-
sparse signal recovery using l1-minimization algorithm with a
probability at least 1− γ.

B. Compressed learning

Calderbank et al. [6] provided the theoretical evidence of
CL that direct inference from compressive measurements is
able to acquire a high classification accuracy under certain
conditions. In particular, their studies proceeded an analysis of
a linear Support Vector Machine (SVM) classifier operating in
the CS domain. For a more complicated classification model,
a deep learning (DL) approach to CL was introduced in [7] for
a higher classification accuracy. Through a linear transforma-
tion using the transpose version of Gaussian random sensing
matrix, compressive measurements are inversely converted to
one vector zzz = ΦΦΦTyyy with the same dimensionality as the
original signal. Afterwards, the authors used a Convolutional
Neural Network (CNN) architecture training on this converted
vector for a classification task. Their experimental results on
MNIST and ImageNet datasets indicated that the performance
of this CNN in the CS domain with a high sensing ratio
approximately exceeds the performance of a CNN operating
in the image domain. However, if this ratio becomes extremely
small, then their learning model acquires a high classification
error level. Recently, Adler et al. [8] has proved that these
unexpected results come from the usage of Gaussian random
matrix and its transpose version. They proposed an end-to-end
deep neural network (DNN) as described in Fig 1 with two
additional fully-connected (FC) layers

vvv = max (0, Φ̃ΦΦxxx) and vvv = max (0, Ξ̃ΞΞxxx) (5)

where Φ̃ΦΦ ∈ RM×N is the optimized sensing matrix and
Ξ̃ΞΞ ∈ RN×M is the optimized inverse transformation matrix,
for impressively higher classification accuracy on the MNIST
dataset of handwritten digits. Typically, as sensing ratio is as

⋯
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Fig. 1. Our modified CL framework for classification task.

small as R = 0.01, the classification error of their model is
only 6.46%. Nevertheless, there is currently no advance in
the ML point of view since the input to these CNN models
has the same dimensionality as the original data. Furthermore,
these models can cause obstacles in ML threatening the
computation time of the classification task with the curse of
data dimensionality.

III. THE PROPOSED APPROACH

A. The proposed DNN architecture

Fig 1 describes the structure of a CNN for image classifi-
cation comprising many convolutional layers (CONV), max-
pooling layers (MP) followed by FC layers [11]. In this paper,
we use a Relu activation function for CONV and FC layers,
a linear activation function for MP layers and a softmax
activation function for the output layer. The output of the
softmax function represents for the probabilities with that an
image belongs to classes.

Adler et al. [8] added two FC layers at the beginning of
a CNN as the compressive sensing stage Φ̃ΦΦ and the inverse
transformation stage Ξ̃ΞΞ (see Eq 5). Firstly, the non-linear
operator in the first FC layer or sensing matrix stage can lose
some information of compressive measurements. The number
of compressive measurements is limited but still reduced
through this layer and hence this non-linear operator degrades
the performance of classification. Our CNN model eliminates
this non-linear operator from the first FC layer.

Secondly, the inverse transformation stage in the model of
Adler et al. plays a role as image recovery. Nevertheless, in
mathematical principle, this operator only performs a linear
combination of linear measurements followed by a Relu oper-
ator. The following CONV layers also performs a partly linear
combination of the output of the inverse transformation stage.
From these reasons, we propose to simplify this model by
combining the second FC layer and the first following (possi-
bly one or more) CONV layers followed by MP operators into
one multi-dimensional FC layer, as described in Fig 1, for ex-
tracting directly the features from compressive measurements.
For two-dimensional (2D) compressive measurements, e.g.
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gray-scale images, a multi-dimensional FC layer is equivalent
to a conventional FC layer performing a matrix multiplication
operation. Whereas, for multi-dimensional inputs, e.g. RGB
color images, it performs a tensordot (TD) operation of Ten-
sorflow framework [12] which sums the products of elements
in all channels. Additionally, we add a dropout (DP) layer to
the output of this multi-dimensional FC layer to reduce over-
fitting problem. In general, our proposed model acquires the
reduced training and classification time, compared to the state-
of-art Adler’s model.

B. The proposed loss function

Given zout be the output vector of the proposed CNN.
For conventional multi-class image classification, the softmax
function on zout

hθ(zout) =
1

1 + e−θT zout
(6)

is used to define the loss function

L(θ) = −
[ m∑
i=1

l(i)log(hθ(z
(i)
out))+(1− l(i))log(1−hθ(z(i)out))

]
(7)

where m is the number of labeled samples, l(i) is label of
training samples. The aim of this CNN framework is to find
the parameters θ of all hidden layers for minimizing the above
loss function.

θopt = argmin
θ
L(θ) (8)

As mentioned before, the mutual coherence property µ(ΦΦΦΨΨΨ)
plays an important role for improving the sparse signal recon-
struction performance in CS frameworks. One wishes to design
sensing matrix with a smallest mutual coherence value. As a
result, we add a regularization term to the above loss function
as follows:

θopt = argmin
θ
L(θ) + βµ(Φ̃ΦΦΨΨΨ) (9)

where β is a regularization factor, to improve signal recovery
quality. A large value of β represents for a big concern about
image reconstruction performance.

IV. EXPERIMENTAL RESULTS

In this section, we carry out experiments on two common
datasets, i.e. MNIST and CIFAR-10, to show the effective-
ness of our proposed model with higher classification and
image reconstruction performance. All networks are trained
using Tensorflow c© Copyright 2017, TensorFlow Authors
[12], on GPU NVIDIA Tesla P100. Our code is avail-
able under the link https://github.com/vinhnxuan/Compressed-
learning for our project codes.

A. Image classification performance
We compare our proposed framework with the one of Adler

et al. which is to our best knowledge regarded as the current
state-of-art CNN model for CL classification. For each dataset,
we employ the training phase on the training set using Adam
algorithm with an annealing learning rate and the loss function
in Eq 8, then evaluate its performance on the testing set. Test,
training accuracies and mutual coherence of sensing matrix
are obtained after 2000 epochs. For statistical results, we train
each CNN five times for each dataset. All achieved results
listed in Table I and Table II, are averages of five training
models.

1) MNIST: is a dataset containing handwritten digits of size
28 × 28 = 784 pixels in grayscale. It is divided into two
parts - training and testing sets of 50000 and 10000 images
respectively. Each image is labeled with one of 10 classes -
digits 0 through 9. The batch size is 50. The learning rate
is initialized with 0.0005 and then annealed by a factor of
0.996/epoch. The input to CNNs is a 2D array of size 28×28
without data augmentation, e.g. cropping, rotating, scaling.

For Adler’s method, besides two FC layers for sensing
matrix and inverse transformation matrix stages, we use the
state-of-art CNN architecture for MNIST dataset classification
[13], [11] described as follows: 1x784-MFC-784FC-1x28x28-
32C3-MP2-64C5-MP3-150FC-DP0.5-10FC. This description
represents a net with an input image vector of size 1x784,
a FC layer with M hidden units (sensing matrix), a FC layer
with L hidden units (inverse transformation matrix), a reshape
operator to an image 28x28, a CONV layer with 32 features
and 3x3 filters, a MP layer over non overlapping regions of
size 2x2, a CONV layer with 64 features and 5x5 filters, a
MP layer over non overlapping regions of size 3x3, a FC
layer with 150 hidden units, a DP layer with a dropout rate of
50% and a FC output layer with 10 units (one per class).
This representation will be used for the short description
of next CNNs. For our proposed method, we modified the
above model as follows: 1. the first FC layer without Relu
operator, 2. the above CNN is simplified to 1x784-MFC-
(32x9x9)FC-DP0.2-64C4-MP2-150FC-DP0.5-10FC. Notably,
another DP layer with a dropout rate of 20% is added after
multi-dimensional (32x9x9)FC layer for reducing overfitting.

We trained two above networks at five different sensing
rates of R = 0.25, 0.1, 0.05 and 0.01 or equivalently the
measurement number of M= 196, 78, 39 and 8. The test
and training accuracies for all scenarios are summarized in
Table I. These achieved results apparently indicate that our
proposed model brings higher test accuracies for all cases of
different sensing rates. As the sensing rate much decreases
from 0.25 to 0.05, the classification performance of our
proposed CNN architecture becomes slightly lower. Especially,
the digit classification with approximately 4% test error can
be obtained with a small sensing rate of only 0.01 or only 8
compressive measurements.

2) CIFAR-10: is a dataset consisting of 60000 32x32
color images (RGB channels) or 3x1024 input tensors in 10
classes, with 6000 images per class. There are 50000 training
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Table I. Classification accuracy (%) and mutual coherence for the MNIST dataset vs. sensing rate R = M/N. For CNN on the original dataset, the
state-of-art performance is 99.52% without data augmentation

Sensing rate M CNN model Test Accuracy Train Accuracy Mutual Coherence Training time/epoch

0.25 196 Adler et al. 98.48± 0.04% 100% 0.79 ≈4.67s/epoch

Our proposed CNN with Eq 8 98.68± 0.06%98.68± 0.06%98.68± 0.06% 99.99% 0.863 ≈4.6s/epoch

Our proposed CNN with Eq 9 - β = 100 98.57± 0.02% 99.98% 0.087 ≈4.8s/epoch

0.1 78 Adler et al. 98.29± 0.02% 99.99% 0.868 ≈4.67s/epoch

Our proposed CNN with Eq 8 98.60± 0.04%98.60± 0.04%98.60± 0.04% 99.95% 0.866 ≈4.6s/epoch

Our proposed CNN with Eq 9 - β = 100 98.06± 0.07% 99.87% 0.18 ≈4.8s/epoch

0.05 39 Adler et al. 98.09± 0.09% 99.99% 0.907 ≈4.67s/epoch

Our proposed CNN with Eq 8 98.57± 0.03%98.57± 0.03%98.57± 0.03% 99.98% 0.922 ≈4.6s/epoch

Our proposed CNN with Eq 9 - β = 100 97.33± 0.11% 99.79% 0.283 ≈4.8s/epoch

0.01 8 Adler et al. 95.18± 0.04% 97.19% 0.9719 ≈4.5s/epoch

Our proposed CNN with Eq 8 95.87± 0.1%95.87± 0.1%95.87± 0.1% 97.28% 0.9728 ≈4.5s/epoch

Our proposed CNN with Eq 9 - β = 100 91.32± 0.3% 93.34% 0.78 ≈4.8s/epoch

Table II. Classification accuracy (%) and mutual coherence for the CIFAR-10 dataset vs. sensing rate R = M/N. For CNN on the original dataset, the
performance of the chosen network is approximately 78% without data augmentation

Sensing rate M CNN model Test Accuracy Train Accuracy Mutual Coherence Training time

0.25 256 Adler et al. 57.12± 0.40% 100% 0.496 ≈10.7s/epoch

Our proposed CNN with Eq 8 60.026± 0.4%60.026± 0.4%60.026± 0.4% 99.97% 0.568 ≈3.5s/epoch

Our proposed CNN with Eq 9 - β = 100 58.468± 0.23% 99.97% 0.082 ≈3.7s/epoch

0.125 128 Adler et al. 56.04± 0.52% 100% 0.551 ≈10.7s/epoch

Our proposed CNN with Eq 8 59.684± 0.357%59.684± 0.357%59.684± 0.357% 99.96% 0.611 ≈3.5s/epoch

Our proposed CNN with Eq 9 - β = 100 57.31± 0.35% 99.94% 0.132 ≈3.7s/epoch

0.0625 64 Adler et al. 55.34± 0.73% 93.75% 0.75 ≈10.7s/epoch

Our proposed CNN with Eq 8 59.568± 0.3%59.568± 0.3%59.568± 0.3% 99.97% 0.699 ≈3.5s/epoch

Our proposed CNN with Eq 9 - β = 100 55.96± 0.29% 99.88% 0.21 ≈3.7s/epoch

images and 10000 test images. For this dataset, we construct
a variant of AlexNet [14] with 5 CONV layers followed by
3 FC layers. In particular, a CNN comprising 1x3x1024-
MFC-1024FC-1x3x32x32-64C5-BN-MP2-64C5-BN-MP2-
128C3-128C3-128C3-BN-MP2-384FC-192FC-10FC is used
for Adler’s method. Notably, BN represents for local response
normalization operator in Tensorflow. The batch size is 128,
the learning rate is initialized with 0.0002 and then annealed
by a factor of 0.996/epoch. The input to the network is a 3D
array of RGB image without data augmentation.

For our proposed method, we use a CNN model comprising
1x3x1024-MFC-(32x8x8)TD-DP0.2-128C3-128C3-128C3-
BN-MP2-384FC-192FC-10FC. In other words, two CONV
layers followed by MP layers for extracting 64 features of
8x8 pixels in the above Adler’s model are replaced by a
multi-dimensional FC layer with TD operator and (32x8x8)
hidden units. Similarly to MNIST model, the first FC layer
has no Relu operator and a DP layer with a dropout rate of
20% is added after the muti-dimensional (32x8x8)TD layer
for reducing overfitting as well as training time. Through
many experiments, we verified that replacing more than two

CONV layers gave the approximate performance, but the
above model is the best one.

Similarly, we trained each network five times on CIFAR-
10 at three different sensing rates of R = 0.25, 0.125 and
0.0625, as described in Table II. The reconstruction of natural
images from compressive measurements relying on only one
FC layer is apparently inaccurate. Whereas, our proposed
modifications not only simplify CNN but also effectively
generates main features with a higher accuracy. From this
reason, the outperformance of our network on CIFAR-10 in
Table II is sufficiently high in comparison to the learning
process on MNIST.

B. Image reconstruction performance

We retrained our proposed models for MNIST and CIFAR-
10 datasets with different loss function in Eq 9 with a
regularization factor of β = 100. For more simplification,
we assume that the verified datasets are sparse in the image
domain and hence there exists no sparsifying dictionary matrix
Ψ in this paper. According to the comparison between results
without and with sensing matrix optimization in Table I and
Table II, the models using the proposed loss function in Eq 9
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Fig. 2. Histogram of all absolute elements in Gram matrices of two sensing
matrices from our proposed CL model without (red line) and with mutual
coherence minimization (β = 100, blue line) for MNIST dataset with N =
784, M = 196.

can generate sensing matrices with lower mutual coherence
values as well as preserve approximately high classification
accuracies. Tensorflow framework [12] uses automatic differ-
entiation for gradient computation of all functions including
the max function in mutual coherence (in Eq 3).

In this part, we carry out a Monte Carlo simulation to
compare the image reconstruction capabilities of two our
proposed models using different loss functions in Eq 8 and
Eq 9 respectively. In particular, two sensing matrices are
picked from the final training models for MNIST dataset with
M=196. Firstly, the histograms of their Gram matrices are
demonstrated in Fig 2 with the red and blue lines respectively.
The sensing matrix without optimization acquires a mutual
coherence value of 0.857 and the one with optimization
acquires the considerably lower value of 0.086.

For a diverse evaluation, a set of 500 images are drawn
from the extended MNIST dataset, which has not been trained
yet in our classification model. For each image, only K
largest-magnitude pixels are kept for the generation of K-
sparse signal. The value of K is randomly chosen from [15,35]
so that the K-sparse signals can be reconstructed exactly,
according to Eq 4, through 196 compressive measurements
using our l1-minimization method, i.e. Kalman filter with
null space [15]. We generate noisy compressive measurements
based on two sensing matrices and then add Gaussian noises
to them with different SNR levels from 20 dB to 80 dB.
The metric of PSNR values between the reconstructed and
originally sparsified images are demonstrated in Fig 3. A
comparison between the achieved results in Fig 3 indicates
that the optimized sensing matrix from our proposed model
using the loss function Eq 9 (blue line) with a lower mutual
coherence brings higher PSNRs or higher image recovery
quality in all cases of different noise variances.

V. CONCLUSION

Our paper proposed a new DNN framework for performing
both classification and image reconstruction separately from
compressive measurements. This combination between CL
and CS is promising for many practical applications where
the size of original data is extremely large. According to
our research, the data can be stored under an appropriate

Fig. 3. Average PSNR of Kalman filter with null space method using two
sensing matrices from our proposed CL model without (red line) and with
mutual coherence minimization (β = 100, blue line) for the sparsified 500
images (K ∈ [15, 35]) of EMNIST dataset with N = 784, M = 196.

format with a high compression rate. Our future work aims
to use this framework for natural images through exploring
the appropriate sparsifying dictionary matrix.
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