
Abstract— Feature extraction from radio-frequency signal finds 

use in a growing number of applications. In cognitive radio 

solutions, spectral occupancy measurements, interferer energy 

estimation and modulation schemes recognition are some 

examples of such relevant features. Regarding radar applications, 

radio-frequency features are related to direction, time-of-arrival, 

or even Doppler characteristics. Recently, we introduced a novel 

Analog-to-Information converter architecture, referred to as Non-

Uniform Wavelet Bandpass Sampling. In this paper, we present 

experimental results of this solution for cognitive radio 

application. The exploited ASIC performs compressive acquisition 

with power consumption as low as 225 pJ/meas for a RF signal in 

the GHz range. An experimental phase transition graph is 

reported with a comparison with its theoretical counterpart. 

Keywords — Analog-to-information conversion, cognitive radio, 

radar, compressive sensing, wavelets, spectrum sensing. 

I. IINTRODUCTION 

ompressive sensing (CS)-based A2I converters are a 

promising solution for wideband radiofrequency (RF) 

direct feature extraction either for cognitive radio or radar. 

Under proper signal structure assumptions (basically consisting 

in sparsity in some basis), CS enables the acquisition of larger 

bandwidths with relaxed sampling-rate requirements, thus 

enabling inexpensive, faster, and potentially more energy-

efficient solutions than traditional Nyquist Analog-to-Digital 

Converters (ADCs) [1]. Recently, we have proposed a novel 

Analog-to-Information (A2I) converter referred to as Non-

Uniform Wavelet Bandpass Sampling (NUWBS) [2]. This 

architecture combines wavelet pre-processing with non-

uniform sampling, which mitigates the key issues of existing 

A2I solutions, such as noise, aliasing, and relax timing 

constraints. Wavelet processing is widely used for natural 

image compression, time-frequency analysis and demonstrate 

its efficiency for MRI [3]. However, time-scale wavelet 

analysis is far less explored in RF applications. In [4], the 

authors first introduce a method for spectrum estimation and 

detection with a wavelet based edge detector combining 

continuous wavelet transform on spectral density, multi-

resolution analysis and compressive sensing. In [5] the authors 

investigate the wavelet packet decomposition for new spectrum 

sensing. At last, the authors of [6] propose a multichannel 

scheme based on Gabor frames that takes advantage of signals 

temporal sparsity and enables sampling multi-pulses signals at 

sub-Nyquist rates extending the concept of Modulated 

Wideband Converter for impulse RADAR application. Wavelet 

processing and our solution, NUWBS, could be advantageously 

used for cognitive radio solution. For instance, NUWBS 

architecture could be seen as an add-on to a main high-end RF 

front end. This add-on senses specific features in RF spectrum 

and provides relevant information to the main receiver for re-

configurability purposes. With respect to radar applications, CS 

has recently opened a new path to sensor design with relaxed 

constraints compared to traditional Nyquist-rate sensing [7]. In 

particular in [8], for Range-Doppler estimation, the technique 

takes advantage of sparsity priors on the Ambiguity Functions 

surfaces. This particularly suits the NUWBS strategy which 

offers flexible control on time-frequency windows for adaptive 

CS.  

In this paper, we present experimental results based on a 

hardware platform demonstrating NUWBS performances in 

terms of transition graph for RF spectral sensing. The paper is 

organized as follows. Section II reminds the basics of NUWBS 

architecture and the related analytical framework. Section III 

provides insight on the hardware platform and the ASIC front-

end used to perform compressive acquisition. Section IV 

describes the measurement results including experimental 

phase transition graph. We conclude and suggest future work 

directions in section V. 

II. COMPRESSIVE ACQUISITION WITH NON UNIFORM WAVELET 

BANDPASS SAMPLING (NUWBS) 

A. Compressive Sensing framework and notation 

Let x ∈ℝN be a discrete time, N dimensional real signal that 

we wish to acquire using a CS strategy. We assume that the 

signal x has a so-called K-sparse representation s ∈ℂN (i.e. the 

vector s has K dominant non-zero entries,	‖�‖� = K) in a 

known (unitary) transform basis Ψ ∈ℂNxN with x = Ψs and ΨHΨ 

= IN. In spectrum sensing applications we first target, one 

typically assumes sparsity in the DFT basis, i.e., Ψ = FH (FH is 

the N-dimensional inverse DFT matrix). CS performs M 

compressive measurements in the form of a set of inner 

products denoted as		
 = 〈�
, �〉 for i =1..M where Φi are the 

measurement vectors of the sensing matrix Φ. In the absence of 

noise, the CS measurement process can be written in compact 

matrix-vector form as follows: 

� = �� = �Ψ	� = Θ	�		with	Θ = �Ψ. (1) 

The M×N matrix Θ=ΦΨ models the joint effect of CS and the 

sparsifying transform. The main goal of CS is to acquire far 

fewer measurements than the ambient dimension N, i.e., we are 

interested in the case where M<< N. This implies that the matrix 

Θ maps K-sparse signals of dimension N to a small number of 

measurements M. 
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B. Principle of the NUWBS architecture 

The principle of NUWBS is illustrated in Fig. 1. In 

comparison with classical Non-Uniform Sampling (NUS), 

NUWBS first transforms the incoming analog time signal �(�) 
into a wavelet frame ��(�) before performing NUS on the 

resulting coefficient [2]. The wavelet transform is directly 

performed in the time domain. The process could be split into 

three steps i) The multiplication of the input signal �(�)	with 

wavelets comb ��(�), ii) The integration and dump over a 

period Ti and iii) The non-uniform sampling of the resulting 

wavelet coefficients at a sub-Nyquist rate ��. The wavelet comb 

lays on a regular sampling grid, sub-sampled in time with 

respect to the Nyquist rate achieving band-pass sampling. The 

compression is due to sub-sampling ratio � = �� !/�� 
combined with a random selection of wavelet coefficient 

among the available ones. The overall sensing strategy thus 

benefits from a twofold dimension reduction with respect to the 

original Nyquist band. 

 

Fig. 1 Overview of the NUWBS architecture. 

C. Analytical framework of NUWBS architecture 

In discrete time, the sensing matrix Φ for NUWBS can be 

described by taking a set Ω of rows of a wavelet frame denoted 

WH∈ℂ|Ω|xN. |Ω| defines the number of available wavelets in the 

frame. #$ defines the row selector operator that picks up 

uniformly at random M wavelets among the |Ω| available so that 

M ≤|Ω|. Hence, the sensing matrix of NUWBS is	�%&'() =
#$*+. We can describe the NUWBS process as:  

	 = #$*+, = Θ%&'()�. (2) 

with the sensing matrix Θ%&'() = #$*+-+.	As a result 

NUWS subsamples the matrix A=(FW)H , which is the 

Hermitian (or self-adjoint) of the Fourier transform of the entire 

wavelet frame. Depending on its time shift and scale, each 

wavelet captures a different portion of the spectrum with 

respect to a given phase and bandwidth defined around a center 

frequency. In this paper, we consider a set of Gabor atoms – 

even if not, mathematically speaking, a wavelet basis –, but 

however, is very similar to an overcomplete dictionary [9]. In 

practice, each atom is defined as a Gaussian window modulated 

by a complex exponential. Our Gabor atoms therefore consist 

of functions parametrized by their temporal width τ, center 

frequencies �/� and time shifts 01. Time and frequency 

representations of l2-normalized Gabor atoms [2] are defined as 

with k=1,…, |Ω|  : 

2345 	(�),67
	 = 8

9
:

√<		=
9
:
>?8=345(@A67)>AB

CDE7
F	 G

H
, (3) 

Ψ345,67(�) = (J√2L)9H	>A?8=673>A(=<	(3A345))H. 
(4) 

D. Benefits of RF wavelet processing and the NUWBS 

architecture 

From a hardware perspective, NUWBS has the following 

advantages. Unlike the NUS approach, the wavelet transform 

�	reduces the bandwidth of the input signal �(�), thus relaxing 

the bandwidth of the S&H circuit and the ADC. Also, many 

alternative CS-based A2Is require Nyquist rate circuits to 

generate random sequences [10] or clocks [11] unlike NUWBS 

solution. In addition, NUWBS enables full control over a 

number of parameters such as the sample time instants, the 

wavelet bandwidth and the center frequency. Thanks to this 

sensing tunability, the measurement strategy can be adjusted 

depending on the signal priors and the target application thus 

allowing the development of an adaptive CS framework. Also, 

traditional bandpass sampling or other CS methods for multi-

band signals highly suffer from noise and interferers aliasing 

[12]. On the contrary, wavelet selection of NUWBS enables to 

arrange the time-frequency tiling in a manner that minimizes 

the disturbances and renders the solution which is resilient to 

out-of-band noise and interferers. The wavelet center frequency 

focuses on the sub-bands of interest while its envelope acts as 

an equivalent filter. At last, NUWBS consists in a convenient 

structure that performs a sensing scheme reducing acquisition 

matrix storage needs and recovery algorithm complexity, unlike 

its fully randomized counterpart. 

III. HARDWARE PLATFORM DESCRIPTION OF NON UNIFORM 

WAVELET BANDPASS SAMPLING SOLUTION (NUWBS) 

A. ASIC description for Wavelet Bandpass sampling solution 

We now target to implement NUWBS solution with a 

practical hardware setup. From the general framework 

described in previous sections, we derivate the practical case 

study to the case where wavelet have a fixed central frequency 

�/� and duration τ along the different atoms. Only the wavelet 

time shift 01	is made variable in the closed form equation (3) 

and could be associated somehow to random filtering. 

Originally designed for coherent impulse Ultra Wide Band 

reception application, our ASIC (Application-Specific 

Integrated Circuit) depicted in [13] is used. This ASIC embeds 

wavelet stream generation centered at 4GHz (�/�) with a 

periodic rate �� =	1/Ts. Then, mixing, integration over a time 

duration Ti and dump features are performed (Fig. 1). The I/Q 

output signal accounts for to the complex wavelet coefficients. 

With this ASIC, wavelet combs generation, wavelet projection 

including signal amplification and correlation could be 

performed with an energy as low as 225pJ/projection [13]. 

B. Hardware platform description 

Fig. 2 shows the NUWBS hardware validation platform. An 

arbitrary waveform generator AWG7122C, feeds in the 

platform a K-frequency sparse real signal in the vicinity of the 

wavelet central frequency �/� = 4GHz within a bandwidth BWRF 

Ts

��	(0) y[n] ADC

� 
x(t) 

PRBS@Ts

∫[Ti]

pc(t) :

tTNYQ τ 

...
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of 125MHz defining the frequency a sub-space Σ. The AWG 

generates unitary-amplitude K tones on a frequency grid with a 

frequency resolution Δ� = 1/Tacq with Tacq defining the overall 

acquisition time Tacq. The signal corresponds to an N-

dimensional input vector x at a Nyquist rate fNYQ and is directly 

loaded from Mathworks® environment. The wavelet rate �� is 

adjusted by an external clock signal leading to an equivalent 

wavelet rate �� =125MHz. It leads to a maximum of |Σ|=64 

wavelet coefficients per acquisition time Tacq (|Σ|=Tacq/Ts). At 

the output, the analog complex (I/Q) wavelet coefficients 

corresponding to vector y is digitalized by a sampling scope. To 

get rid of any parasitic noise effects, the scope averages each 

coefficient over 16 iterations. Measurement data are then 

transferred to the Mathworks® to perform a CS recovery 

algorithm. Table I summarizes the parameter settings of the 

hardware platform. 

 

Fig. 2 : NUWBS hardware validation platform  

TABLE I.  NUWBS HARDWARE PLATFORM SETTINGS 

Parameters description Name 
Typical 

value 

Comment 

Nyquist rate �� !	 32 GHz  

Resolution frequency Δ�	 1.9531MHz =	fNYQ	/N	
Acquisition time Tacq	 512 ns =1/Δf	
Wavelet central frequency �/�	 4.0 GHz 	
Wavelet duration τ	 2.75 ns 	
Wavelet repetition Frequency 

= Sampling frequency 
�� 	 125 MHz 

=	1/Ts	
Sensing bandwidth BWRF	 125 MHz 	
Subsampling ratio γ	 256 

=	fNYQ/fs	
=	N/|Σ|	

Number of wavelet Coefficients 

per acquisition Time 
|Σ|	 64 =	Tacq/Ts	

=	BWRF/Δf	
=	N/	γ	

IV. EXPERIMENTAL RESULTS OF NUWBS FOR RF SIGNAL 

ACTIVITY DETECTION 

In this application, we target RF activity detection, which is 

equivalent to frequency support recovery. From 	 acquired by 

the platform, spectral support of s is recovered using orthogonal 

matching pursuit algorithm (OMP). This sparse approximation 

algorithm requires the knowledge of a properly characterized 

measurement matrix Θ%&'() and can also takes advantage of 

knowing the sparsity degree K. Section A describes the learning 

phase of the acquisition matrix Θ%&'() needed by the recovery 

algorithm. Section B gives the typical RF scenario considered 

for activity detection. Section C provides a better insight of 

measured CS vector 	 and compares measurements with a 

theoretical approach. At last, Section D shows and discusses the 

full transition graph performance of the proposed solution. 

A. Learning of the experimental acquisition matrix A 

The OMP requires the acquisition matrix used for the 

compressive measurement Θ%&'() = #$(-*)+	defined in 

(2). The row selector #$	, selecting M measurements out of |Σ| 

is straightforwardly obtained since it corresponds to the wavelet 

index k selected from 1..|Σ|. However, in the matrix 

Θ%&'()	expression, the matrix _ = (-*)+	 needs to be 

accurately characterized in order to employ the OMP algorithm.  

This greedy algorithm is a basic one, not robust to noise issues 

but well suited to demonstrate the intrinsic performances of the 

hardware without any algorithm trick. The matrix _ only 

depends on the ASIC characteristics and can be acquired once 

forever. The objective of this section is to measure this 

experimental acquisition matrix provided by the hardware 

platform. To do so, we sweep the input frequency �̀ = a`Δ� 

over a frequency range from 2.5GHz to 5 GHz. The frequency 

of the output signal �bc@  fold into [-��/2;	��/2] and in the case of 

a single tone input, �bc@  is linked to the input frequency �̀ 	by 

the following equation: 

�bc@ = �̀ d ��	 e3f		3g	h with	i	j the round operator. (5) 

Discrete Fourier Transform (DFT) is computed to extract the 

magnitude of the signal at �bc@ . It leads to the module of any 

rows of A noted |_k,:| for k=1..|Σ|. The matrix module accounts 

for the filtering property of the NUWBS solution [2] acting like 

a transfer function. On Fig. 3 the measured d10dB bandwidth 

of the transfer function module is 300 MHz. Fig. 3 shows also 

experimental argument of the acquisition matrix A which 

depends on row index k in accordance with theoretical 

expression extracted from (4) : 

mnop_k,:q = d2Lrs�t∆�. (6) 

 

 
Fig. 3 : Magnitude and Argument of the experimental matrix A (f>0) 
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B. Compressive sensing acquisition scheme 

With regard to the RF signal activity detection scenario, we 

consider a single active sub-band of interest BWRF among the 

entire Nyquist band denoted �� ! . The total number of 

potentially active frequency bins within BWRF is denoted |Σ| = 

64. The spectral sensing functionality of the system consists in 

finding what the active bins within the overall available |Σ| are. 

The real signal is assumed to be K ≤ |Σ| sparse. The NUWBS 

measurements are selected according to the illustration 

provided on Fig. 4. We set in the ASIC a constant wavelet 

central frequency �/� 	= 4GHz, duration τ and repetition 

frequency fs to 125 MHz. It leads to a sub-sampling ratio  � =
�� !/��  of 256. The sub-sampling ratio is inherent to the 

bandpass sampling property of NUWBS solution. In addition, 

NUS of the wavelet coefficient allows a selection of M 

coefficients out of the |Σ| available, thus performing the 

compressive operation. 
 

Fig. 4 : Illustration of sampling scheme of NUWBS validation platform 

Fig. 5 provides a comprehensive overview of the sensing 

scheme used in the validation hardware platform. In this 

scenario, a sparse signal occupies K = 8 bins (green) among |Σ| 

= 64 bins available (dark blue) from ν = 2144..2176 with 

unitary-amplitude. In addition, it can be noticed that the 

magnitude of the experimental acquisition matrix A for � > 0	 
(soft blue) and the analytical behavioral model of the wavelet 

envelop (magenta) are overlaid. 

 
Fig. 5 : Illustration of compressive sensing acquisition scheme [K=8 activated 

bins (green) within  BWRF ={2114…2176}∆f] - Comparison with the 

magnitude of acquisition matrix |A| (soft blue) and analytical behavioral 

model of wavelet envelop (magenta)  

C. Analysis of typical compressive sensing wavelet coefficient 

For the sake of illustration, Fig. 6 exhibits i) the compressive 

sensing measurement vector y, ii) the product _ × � between 

the experimental acquisition matrix (from previous section) and 

the generated input signal spectrum s, and iii) directly the sum 

of the relevant column index the experimental acquisition 

matrix yk = ∑ Ak,|	|}~ where Λ represents the input signal 

support. The illustration corresponds to the acquisition scenario 

described in the previous section (K = 8). Each value of the 

measurement vector yk for k = 1…|Σ| accounts for a wavelet 

coefficient corresponding to the projection of input signal �(�) 
on the wavelet atom 2345 	(�),67

	 . The experimental acquisition 

matrix _ includes delay re-synchronization between wavelet 

comb and input signal so that we have a proper matching 

between measurement and analytical computation. This has 

been validated along the case where measurement vector y is 

full (i.e. M = Σ = 64) and with compression rate of 0.5 (M = 32) 

as illustrated on Fig. 6. 

 
Fig. 6 : Normalized Imaginary values of CS vector y[k] and comparison 

with analytical results ( A×s) [K=8; M=32; |Σ|=64]

D. Transition graph measurement 

Once compressive measurements are performed, the spectral 

support of s is recovered based on a standard OMP algorithm 

fed by the sparsity degree K and the experimental acquisition 

matrix Θ%&'(). Moreover, the reconstruction is restricted to the 

sub-bands of interest,  assuming that the knowledge of the sub-

band support Σ is an additional prior. The usage of the OMP is 

therefore limited to find the K active coefficients within these 

sub-bands. As result, we measure an experimental phase 

transition graph that characterizes the probability of correct 

support recovery from NUWBS measurements [14]. To carry 

out this exhaustive characterization, we generate measurement-

sparsity pairs (M, K) and perform support set recovery for 100 

Monte–Carlo trials and report the average of the error 

probability Pe. A success is declared if and only if all the bins 

locations are correctly detected by the algorithm. On Fig. 7 the 

phase transition graph is plotted a grayscale image where the 

pixel intensity represents the probability of error. Magenta plain 

line is the reference baseline and minimum bound, 

corresponding to the theoretical phase transition plan of l1-

norm based sparse signal recovery for a Gaussian measurement 

ensemble [14]. We can observe a suitable fitting between 

theoretical equation and measurement results especially at low 

sparsity degree where OMP algorithm is known to be the most 

efficient. To provide better insight on performances, Fig. 8 

shows specific sparsity level corresponding to cut plan of the 
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full transition graph reported on Fig. 7.  

 

Fig. 7 : Experimental Transition graph cuts of NUWBS solution 

The error probability is plotted as a function of compression 

ratio M/|Σ| for several relative sparsity degree K (K=1, 2, 4, 6, 

8). Dash line corresponds to the expected theoretical 

performances while plain line with a cross marker is the 

compressive measurement vector y measured in practice. These 

results demonstrate the functionality of the non-uniform 

wavelet bandpass sampling NUWBS to perform support 

recovery of RF signal.  

 

Fig. 8 : Experimental Transition graph cuts of NUWBS solution 
 

 

 

 

V. CONCLUSION AND FUTURE WORK 

The NUWBS architecture is a promising solution for RF 

applications. This solution could be applied for RF features 

extraction either in cognitive radio context or radar application. 

In this paper, we exploit NUWBS for spectrum sensing 

capability i.e., support detection of frequency sparse signal. The 

hardware platform uses a power efficient ASIC implementing 

NUWBS RF front end. The solution does not require either fast 

Nyquist rate components or converter with high analog 

bandwidth. This ASIC performs compressive acquisition with 

power consumption as low as 225 pJ/meas for an RF signal in 

the GHz range. Acquisition matrix learning phase is presented 

so as to characterize NUWBS RF front end. Experimental 

transition graph is provided and shows a decent matching 

between theoretical and practical approaches especially when 

the sparsity degree K is low. Future work directions are many-

fold. Parametric analysis on circuit parameters could be 

performed to evaluate sensitivity of CS approach to RF 

impairments including noise performances analysis. Also, 

alternative recovery algorithm to OMP could be benchmarked 

on the same platform to estimate the impact of the different 

noise sources. Furthermore, CS-based RF feature extraction 

could be pursued for direct signal classification either for 

cognitive radio or radar application. 
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