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Abstract— A stochastic approach to resolution is explored by 

using information distances computed from the geometry of 

data models which is characterized by the Fisher information. 

Taking information distances into account is crucial in 

compressive data acquisition typical for compressive sensing 

(CS). Based on this information-geometry approach, we assess 

the stochastic resolution bounds from data models with typical 

compressive measurements and with the Nyquist-sampled 

measurements as the reference. Such resolution bounds are 

also compared with actual resolution obtained from sparse 

signal processing that is nowadays a major part of the back 

end of a radar system with CS.  The resolution analysis 

demonstrates that only with a compressive data acquisition 

scheme of random masking (starting directly at reception, with 

no receiver noise yet), compressive measurements can perform 

as good as Nyquist-sampled measurements.   

Keywords— compressive measurements; stochastic 

resolution; information geometry; array processing; radar; 

I. INTRODUCTION 

Compressive sensing (CS) is a recent paradigm in sensing 

that works with a reduced number of measurements for a 

comparable sensing result. This is possible because CS is 

optimized to available information in measurements rather 

than to the sensing bandwidth only. The optimization is 

based on two conditions: sparsity of sensing results and the 

sensing incoherence (e.g. [1]). In a CS sensor, sparse signal 

processing (SSP) is crucial in the back end, while its front 

end facilitates compressive data acquisition. The ultimate 

goal of CS is a CS sensor which is simpler and still performs 

at least as good as, or even better than, existing sensors. 

Compressive data acquisition and also a whole CS sensor 

are regularly believed to be less complicated (and even less 

costly) while performing satisfactorily. However, the 

performance and overall processing gain in CS are becoming 

additionally important and delicate due to fewer 

measurements (e.g. [2]-[3]). As we focus on a CS sensor as a 

whole, we check how fewer measurements from the 

compressive data acquisition affect the performance of SSP 

in the back end. Therefore, we assess the resolution potential 

of different compressive data acquisition schemes (given the 

same input signal). We show that with the scheme applied 

directly at reception (e.g. [4]-[5]), a CS sensor can be simpler 

and still perform as good as existing sensors. 

Resolution is primarily described by the minimum 

distance between two objects that a sensor can resolve (e.g. 

[6]). Stochastic resolution has been introduced in [7] by 

including the Cramér-Rao bound (CRB). This stochastic 

approach was extended with the probability of resolution at a 

given separation and signal-to-noise ratio (SNR) obtained via 

an asymptotic generalized likelihood ratio (GLR) test based 

on Euclidean distances ([8]). Information distances and 

resolution have also been explored with an arbitrary test 

([9]). Information geometry (IG, [9]-[11]) and CS ([1] and 

[12]-[13]) have the potential to contribute to the completeness 

of the stochastic approach, due to their focus on information 

content ([3], [5] and [14]-[17]). In [16]-[17], the Fisher-Rao 

information distance is recognized in the asymptotic GLR. In 

[3], different information distances are linked to the LR and 

applied to Nyquist and sub-Nyquist random measurements.  

In this paper, the stochastic resolution analysis from [3] is 

focused on different compressive data acquisition schemes.   

A. Related Work 

During substantial CS research in the decade starting in 2005 

(e.g. [1] and [12]-[13]), no complete guarantees of CS-sensor 

resolution performance were developed yet. In particular, the 

analysis of compressive data acquisition was lacking.  

Stochastic resolution limits were studied (e.g. [7] and [8]) 

but without IG or CS. Information resolution was studied 

(e.g. [9]) but not via (G)LRT nor linked to the CS-radar 

resolution. The stochastic resolution was analyzed via (G)LR  

and compared to the SSP resolution in [3] and [16]-[17].  

In addition, in [3], fewer random measurements are also 

used. In this paper, the resolution analysis is extended and 

committed to typical compressive data acquisition schemes.  

B. Outline and Main Contributions 

In Section II, relevant data acquisition schemes are presented 

starting with the Nyquist scheme as the reference, followed 

by two typical sub-Nyquist schemes from [5]. In Section III,  

stochastic resolution analysis [3] is applied to the data 

acquisition schemes. In Section IV, numerical results 

supporting the analysis are presented. In the end, conclusions 

are drawn and future work indicated.  

Our main contribution is the resolution analysis of typical 

data acquisition schemes in CS. Furthermore, we compare 

compressive data acquisition with a corresponding existing 

scheme as the reference. Finally, when looking at a CS 

sensor as a whole, we reveal that a CS sensor with certain 

compressive data acquisition can be less involved and still 

perform as good as existing sensors. 
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II. COMPRESSIVE DATA ACQUISITION 

Compressive data acquisition may change processing gain 

and sensing performance (e.g. [2]-[3]). We are interested in 

acquisition schemes with Nyquist-sampled data as the 

reference, and with typical sub-Nyquist data compressed 

before and at reception (which remain Gaussian-distributed). 

In an array of size 𝑁, raw complex-valued measurements 

gathered in a vector  𝒚 ∈ ℂ𝑁 of an input (true) signal 𝒔 ∈ ℂ𝐾  

from 𝐾 point targets can be modelled as (e.g. [18]):  

𝒚 = ∑ s𝑘𝑒𝑗𝛃θ𝑘𝐾
𝑘=1 + 𝒛 = ∑ s𝑘𝒂(θ𝑘)𝐾

𝑘=1 + 𝒛

where s𝑘 is the 𝑘th-target echo in 𝒔, 𝛃 ∈ ℝ𝑁 is an 

observation vector (centered, i.e. ∑ β𝑛𝑛 = 0), θ𝑘 is an 

unknown, 𝒛 is a (complex Gaussian) receiver-noise vector of 

i.i.d. elements with zero mean and equal variances , 

𝒛~𝐶𝑁(𝟎, γ𝑰𝑁) and  𝒂(θ) is a sensing vector with norm √𝑁, 

𝒂(θ) = 𝑒𝑗𝛃θ. In a spatial array, β𝑛 and θ𝑘 would yield the 

antenna-element position and unknown angle, respectively.  

For the sake of an information distance between 

𝐶𝑁(𝛍(θ), γ𝑰𝑁) and 𝐶𝑁(𝛍(θ + δθ), γ𝑰𝑁) and its link to 

resolution ([3]), we investigate 𝒔 which contains a single 

nonrandom component. The reference Nyquist-sampled (NS) 

data 𝒚 ∈ ℂ𝑁, 𝒚~𝐶𝑁(𝛍(θ), γ𝑰𝑁), can be written as:  

   𝒚 = 𝒂(θ)𝑠 + 𝒛 = 𝛍(θ) + 𝒛 ≡ 𝛍 + 𝒛

where 𝒂(θ) ∈ ℂ𝑁x1 is a sensing vector belonging to the 

nonzero response 𝑠 at θ and 𝒛 is as before, 𝒛~𝐶𝑁(𝟎, γ𝑰𝑁). 

The complex-valued target echo 𝑠 is assumed to have 

constant nonrandom amplitude |𝑠| (so-called SW0, [19]). 

The related signal-to-noise ratio (SNR) is equal to |𝑠|2 γ⁄ . 

We investigate compressive data acquisition with two 

sub-Nyquist data models containing the Gaussian noise. First 

we look at compression before reception, namely at sparse 

sensing (SS, e.g. [20]). Further, we look at random masking 

(RM, e.g. [4]-[5]) which enables the compression directly at 

reception where receiver noise can be ignored.  

In the SS scheme, the corresponding model of the 

compressed data 𝒚SS ∈ ℂ𝑀, M < N, can be written as follows:  

       𝒚SS = 𝑩SS𝒚 = 𝑩SS𝛍 + 𝑩SS𝒛 =𝛍SS +  𝒛SS

where the compression matrix 𝑩SS has M ones (chosen in a 

multi-coset manner, e.g. [19]) one on every row and zeros 

elsewhere. Accordingly, 𝒚SS, 𝛍SS and 𝒛SS contain the 

corresponding M elements from 𝒚, 𝛍 and 𝒛, respectively. 

Thus, there are 𝑀 outputs, each output having the noise as in 

the reference case, 𝒛SS~𝐶𝑁(𝟎, γ𝑰𝑀). From a single 

realization of 𝑩SS, we can assume 𝒚SS~𝐶𝑁(𝛍SS, γ𝑰𝑀). 

In the RM scheme, the related model of the compressed 

data 𝒚RM ∈ ℂ𝑀, M < N, can be written as follows:  

          𝒚RM = 𝑩RM𝛍 + 𝒛RM =𝛍RM + 𝒛RM

where the compression matrix 𝑩RM is a full random matrix. 

We investigate a practical 𝑩RM which contains uniformly-

distributed phase shifts. Its 𝑚𝑛–th element 𝑏RM,𝑚𝑛 equals 

exp(𝑗φ𝑚𝑛) √𝑀⁄  where φ𝑚𝑛~𝑈(0,2𝜋). In RM, 𝑩RM affects 

only the signal as it works at reception without any receiver 

noise yet. After reception there are 𝑀 outputs whose receiver 

noise is equivalent to the SS case, i.e. 𝒛RM~𝐶𝑁(𝟎, γ𝑰𝑀), and 

𝒚RM~𝐶𝑁(𝛍RM, γ𝑰𝑀) from a single realization of 𝑩RM. 

In CS, the solution for the unknown 𝒔 from data models 

(1)-(4) is sought by applying the model: 𝒚c = 𝑨c𝒙 + 𝒛c 

where 𝑨c is the sensing matrix over a discrete grid of size N, 

𝑨c ∈ ℂ𝑀x𝑁 and 𝒙 is a sparse vector, 𝒙 ∈ ℂ𝑁. The usual SSP, 

e.g. LASSO [21], applies as:  

𝒙SSP = arg min𝒙  ‖𝒚c − 𝑨c𝒙‖2 + η‖𝒙‖1

where the l1-norm ‖𝒙‖1 promotes sparsity, the l2-norm 

‖𝒚c − 𝑨c𝒙‖ minimizes the errors, and a regularization 

parameter  balances between the two tasks. The parameter 

is closely related to the detection threshold (e.g. [24]). An 

underdetermined system can be solved, M < N, because of 

the sparsity, i.e. only K nonzeros in x (representing the 

unknown 𝒔), K < M < N, and because of the incoherence of 

𝑨c (e.g. [1]). The mutual coherence κ(𝑨)of a matrix𝑨 is an 

incoherence measure, κ(𝑨) = max𝑖,𝑗,𝑖≠𝑗 |𝒂𝑖
H𝒂𝑗| ‖𝒂𝑖‖‖𝒂𝑗‖⁄  

where 𝒂𝑛 is the nth column of 𝑨, n= 1, .., N.  

In radar processing, a sensing matrix 𝑨 is intrinsically 

deterministic and its incoherence is also intrinsically strong 

because of the physics of radar sensing. In array processing 

as in (1), the sensing matrix 𝑨c from (5) is often an (I)FFT 

matrix, i.e. κ(𝑨c) = 0 when M = 𝑁. With a uniform array of 

size 𝑀, the grid cell Δθ is 2/𝑀 large. Such a cell size is 

called the Nyquist size. Fewer measurements, i.e. when M 
< 𝑁, or a smaller cell Δθ would make κ(𝑨c) increase. 

III. STOCHASTIC RESOLUTION ANALYSIS 

Our resolution analysis is based on distances between two 

populations that have been studied in information geometry 

(IG). IG studies manifolds in the parameter space of 

probability distributions, using the tools of differential 

geometry (e.g. [10] and [11]). The inner product of two 

vectors 𝒗 and 𝒘 in a Euclidean space: ⟨𝒗, 𝒘⟩ =  𝒗H𝒘 is 

redefined locally as: ⟨𝒗, 𝒘⟩ =  𝒗H𝑮𝒘, where 𝑮 is a crucial 

metric defined by the Fisher information matrix (FIM) in IG.  

In the accuracy analysis, the metric 𝑮(𝛉) is typically 

applied to the Cramér-Rao bound (CRB) of the mean squared 

error (MSE) of an unbiased estimator �̂� of 𝛉, i.e. MSE(�̂�)  ≥

CRB(𝛉) = [𝑮(𝛉)]−1 (e.g. [18]). 

In addition, 𝑮(𝛉) is also used for resolution bounds based 

on information distances between 𝑝(𝒚|𝛉) and 𝑝(𝒚|𝛉 + 𝑑𝛉)  

when 𝛉 change a bit by 𝑑𝛉 (e.g. [3], [9] and [16]-[17]). 

A. Information Distances 

An information distance 𝑑𝛍(θ) between 𝐶𝑁(𝛍(θ), 𝚺) and 

𝐶𝑁(𝛍(θ + δθ), 𝚺) with the same covariance 𝚺, 𝚺 = γ𝑰𝑁, and 

different means, δ𝛍 = 𝛍(θ + δθ) − 𝛍(θ), is derived analog 

to the distance from [10] between 𝑁(μ, γ) and 𝑁(μ + δμ, γ) 

on the manifold in (μ, √γ). The distance 𝑑𝛍(θ) can be given 

by the Mahalanobis distance (e.g. [22]) as follows: 
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𝑑𝛍(θ) = √δ𝛍𝐻𝑮δ𝛍 = ‖δ𝛍‖ √γ⁄   

where 𝑮 is the inverse of 𝚺. We realize that the FIM for the 

mean 𝛍 also equals 𝑮 defined as follows (e.g. [23]):  

𝑮 =  −E [
𝜕2 ln 𝑝(𝒚|𝛍(θ))

𝜕𝛍𝜕𝛍𝐻 ] =
1

γ

𝜕

𝜕𝛍𝐻

𝜕𝛍𝐻𝛍

𝜕𝛍
=

1

γ

𝜕

𝜕𝛍𝐻 𝛍∗ =
1

γ
𝑰𝑁   

where 𝛍∗ is the complex conjugate of 𝛍, and 𝛍𝐻 ≡ 𝛍∗𝑻. 

Next we apply (6) to the three acquisition schemes: NS, 

SS and RM from (2), (3) and (4), respectively.  

The distance 𝑑𝛍(θ),NS with NS from (2) can be derived as:  

𝑑𝛍(θ),NS = ‖δ𝛍NS‖ √γ⁄ → √
D𝛽|s|2

γ
(1 −

sin D𝛽δθ 2⁄

D𝛽δθ 2⁄
)  

where D𝛽 is the array (aperture) size, D𝛽 = max𝑛 𝛽𝑛 −

min𝑛 𝛽𝑛. The closed form is obtained when the observation 

variable 𝛽 is treated as continuous in the norm ‖δ𝛍‖ →
‖δμ(𝛽, θ)‖, −D𝛽 2⁄ ≤ 𝛽 ≤ D𝛽 2⁄ . The continuous domain 

enables the ultimate reference before any sampling (as a 

subject of further work). Note that there appears a complete 

set of parameters affecting the resolution: D𝛽, SNR and δθ. 

The distance 𝑑𝛍(θ),SS expected with SS in (3) is given by:  

𝑑𝛍(θ),NS = E [
‖δ𝛍SS‖

√γ
] = 𝐸 [√

δ𝛍H𝑩SS
H 𝑩SS𝛍

γ
] = √

𝑀

𝑁
𝑑𝛍NS(θ)  

as 𝑩SS
H 𝑩SS is an 𝑁x𝑁 diagonal matrix with only M ones on 

the diagonal and zeros elsewhere, M < N. 

The distance 𝑑𝛍(θ),RM expected with RM from (4) where 

E[𝑩RM
H 𝑩RM] = 𝑰𝑁 is given by:  

𝑑𝛍(θ),RM = E [
‖δ𝛍RM‖

√γ
] = 𝐸 [√

δ𝛍H𝑩RM
H 𝑩RM𝛍

γ
] = 𝑑𝛍NS(θ)

as E[𝑏RM,𝑚𝑙
∗ 𝑏RM,𝑚𝑘] equals 1 when 𝑙 = 𝑘, and 0 otherwise.  

Hence, RM preserves the information distance from NS 

while SS makes it decrease proportionally with √𝑀/𝑁. 

Next we derive the stochastic resolution bounds from the 

distance 𝑑𝛍(θ) in (6) as the probability that two point targets 

can be resolved at a separation δθ and a particular SNR. 

B. Stochastic Resolution 

In some early work on IG [10], Rao proposed testing the 

resolution in θ from data 𝒚 with a hypothesis 𝐻0: δθ = 0 and 

its alternative 𝐻1: δθ ≠ 0, by using a distance between the 

data populations 𝑝(𝒚|θ) and 𝑝(𝒚|θ + δθ).  

In [3], the equivalent binary hypothesis at the true 

separation δθ is expressed as follows:  


𝐻0: 𝒚 =  2𝛍(θ) + 𝒛 =  𝒚0                                    

𝐻1: 𝒚 =  𝛍(θ) +  𝛍(θ + δθ) + 𝒛 =  𝒚0 +  δ𝛍 


where the data 𝒚 as in (2)-(4) contain responses from two 

point targets separated by δθ. Consequently, the likelihood 

ratio (LR), LR =  𝑝(𝒚|θ, θ + δθ) 𝑝(𝒚|θ)⁄ , is explored. From 

(10), a test statistic ln LR is derived as follows:  

ln LR = (2𝑅𝑒 {[𝒚 − 2𝛍(θ)]𝐻δ𝛍} − ‖δ𝛍‖2) γ⁄ 

whose Gaussian distribution is defined with the distance 

𝑑𝛍(θ) from (6), ln LR~𝑁(∓𝑑𝛍(θ)
2 , 2𝑑𝛍(θ)

2 ). Thus, a link is 

established between a resolution test and an information 

distance between 𝐶𝑁(𝛍(θ), 𝚺) and 𝐶𝑁(𝛍(θ + δθ), 𝚺).  

In order to assess the probability of resolution 𝑃res,μ, the 

ln LR from (11) is tested with a test statistic 𝜉LR,𝛍(θ) under 𝐻1, 

𝜉LR,𝛍(θ) = ln LR 2𝑑𝛍(θ)⁄ + 𝑑𝛍(θ) 2⁄ ~𝑁(𝑑𝛍(θ), 1), against a 

threshold ρ obtained under 𝐻0 from the inverse normal 

distribution at the false-alarm probability 𝑃fa, ρ =
𝑁inv(0, 1, 𝑃fa), as follows ([3]):  

  𝑃res,μ =P{𝜉LR,𝛍(θ) > ρ | 𝐻1} ,𝜉LR,𝛍(θ)~𝑁(𝑑𝛍(θ), 1)

In cases with Gaussian data as in (1)-(4), other information 

(pseudo-)distances can also be used to compute the test 

statistic 𝜉LR,𝛍(θ) of the resolution bound 𝑃res,μ. For example, 

the Kullback-Leibler divergence 𝑑KL and Bhattacharyya 

distance 𝑑BT, are related to the information distance 𝑑𝛍(θ) 

(and also to LR, [3]) as:  𝑑KL = E𝐻1
[ln LR] = 𝑑𝛍(θ)

2  and 

𝑑BT = − ln E𝐻0
[√LR] =  𝑑𝛍(θ)

2 4⁄ ,  respectively. 

With the measurements from NS, SS and RM, the 

stochastic resolution bounds 𝑃res,μ,NS, 𝑃res,μ,SS and 𝑃res,μ,RM 

are computed from (12) by using the distances 𝑑𝛍(θ),NS, 

𝑑𝛍(θ),SS and 𝑑𝛍(θ),RM from (7), (8) and (9), respectively. 

Finally, the resolution bounds given by the IG-based 

probability 𝑃res,μ in (12) are compared with the SSP 

resolution whose probability 𝑃res,SSP is assessed numerically 

from 𝒙SSP in (5) for the two target cells 𝑖 and 𝑗, 𝑖 ≠ 𝑗, by:  

 𝑃res,SSP = P{(𝑥SSP,𝑖 ≠ 0) ∧ (𝑥SSP,𝑗 ≠ 0)| 𝐻1} 

where SSP in (5) uses η given by: η2 = −γln𝑃fa (e.g. [24]). 

In NS, SS and RM, the SSP resolution probabilities 

𝑃res,SSP,NS, 𝑃res,SSP,SS and 𝑃res,SSP,RM are assessed with the 

SSP estimates from (5) obtained with the measurements 

modelled in (2), (3) and (4), respectively. 

IV.  NUMERICAL RESULTS 

The resolution analysis from Section III is demonstrated with 

numerical tests from array processing of two close equal 

targets at different SNRs. The measurements 𝒚 from (1) are 

acquired from a linear array of size 𝑁, and contain responses 

from two point-targets separated by δθ, 𝒚 =  𝛍(θ) +
𝛍(θ + δθ) + 𝒛. The total number 𝑁 of array elements is 

chosen to be 100 while a number 𝑀 of compressive 

measurements is chosen to be 50 and 25, i.e. the compression 

factor 𝑁 𝑀⁄  equals 2 and 4, respectively. The observation 

grid is Nyquist in NS as 𝑁 = 𝑀, or sub-Nyquist in SS and 

RM as 𝑁 > 𝑀. The 𝑚𝑛–th element: exp (𝑗φ𝑚𝑛) √𝑀⁄ , of the 

random matrix 𝑩RM represents a phase shift by a uniformly-

distributed angle φ𝑚𝑛, φ𝑚𝑛~𝑈(0,2𝜋). A multi-coset pattern 

is chosen for 𝑩SS whose array edge elements are always kept 

equal to one (so that the array size D𝛽 remains the same).   

The true input signal 𝑠 is kept the same in all the 

acquisition schemes. The estimation grid of size 𝑁 is also 
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kept the same. The targets are separated in θ by δθ up to 

three Nyquist cells large, i.e. up to 6π/𝑁. The signal 

amplitude |𝑠| equals √γSNR and the noise variance γ is 

constant, γ =1. The false-alarm probability 𝑃fa is set to 

0.000001 (as realistic in radar) in ρ and η from (12) and (13). 

In Fig. 1, the information distances 𝑑𝛍(θ),NS, 𝑑𝛍(θ),SS and 

𝑑𝛍(θ),RM computed from (7), (8) and (9), respectively, are also 

assessed numerically from the simulated data as the mean 

values from 100 Monte-Carlo realizations of the noise 𝒛, and 

of the compression matrices 𝑩SS and 𝑩RM. The analytical and 

numerical results of the information distances (normalized by 

√𝑁 for the sake of clearer comparison) coincide.  

In Fig. 2, the resolution bounds 𝑃res,μ,NS, 𝑃res,μ,SS and 

𝑃res,μ,RM together with the SSP probabilities 𝑃res,SSP,NS, 

𝑃res,SSP,SS and 𝑃res,SSP,RM are shown for the same 100 

realizations of the test cases at δθ equal to 2π/𝑁 or 4π/𝑁. 

The bounds 𝑃res,𝛍∗
 are far from 𝑃res,SSP,∗, especially of SS. 

The resolution probabilities from RM and NS are 

comparable. In addition, at larger δθ (Fig. 2, bottom), 𝑃res,𝛍∗
 

 

 

Fig. 1. Information distances from data acquisition schemes NS, SS and 

RM: 𝑑𝛍(θ),NS, 𝑑𝛍(θ),SS and 𝑑𝛍(θ),RM versus separation δθ at unit SNR 

and compression factor 𝑀/𝑁 equal to 2 (top) and 4 (bottom) in SS 
and RM, computed from (7), (8) and (9), respectively, and assessed 
numerically as the average values from 100 Monte-Carlo runs. 

 

 
Fig. 2. Resolution of data acquisition schemes NS, SS and RM given 

by the resolution bounds computed from (12):  𝑃res,μ,NS, 𝑃res,μ,SS and 

𝑃res,μ,RM, together with the related SSP resolution probabilities 

obtained from (13): 𝑃res,SSP,NS, 𝑃res,SSP,SS and 𝑃res,SSP,RM, respectively, 

at separation δθ equal to one (top) and two (bottom) Nyquist cells and 

compression 𝑁/𝑀 equal to 2 in SS and RM. Test cases as in Fig. 1.  

and 𝑃res,SSP,∗ remain nearly the same. This behavior agrees 

with the related information distance 𝑑𝛍(θ) in Fig. 1 which 

also remains nearly the same at the larger separation.  

V. CONCLUSIONS 

The resolution performance of typical sub-Nyquist data 

acquisition schemes from CS was assessed, and moreover, 

compared with the performance of the corresponding 

Nyquist-sampled scheme as the reference.  

 The resolution analysis demonstrated that a CS sensor 

can be simpler with fewer measurements and can still 

perform as good as existing sensors. This is true only in the 

case of compressive data acquisition starting directly at 

reception with no receiver noise yet, and thus, affecting the 

signal only. An example of the scheme is random masking. 

In future work, the performance of CS radar is being 

further assessed by evaluating the SSP detection and 

accuracy when compressive data acquisition is applied. 

Furthermore,  the continuous domain is being analyzed to 

determine the reference (before any sampling) for the 

performance analysis of compressive measurements.  
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