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Abstract—The variance calculation of the initial DFT estimate
for a nonuniformly sampled signal in ISAR with a reduced set
of samples is derived and statistically verified. The results for
subsets of uniformly and randomly sampled signals follow as
the special cases. The obtained results can be used to define an
efficient threshold for the matching pursuit reconstruction and
to derive the error in the final ISAR signal reconstruction using
a reduced set of randomly positioned samples when the sparsity
condition is not satisfied.

Index Terms—ISAR, Compressive sensing, DFT, Sparse sig-
nals, Signal reconstruction

I. INTRODUCTION

A radar image is obtained by calculating the two-
dimensional Fourier transform (FT) of the received signal.
The radar image consists of peaks of scattering points at the
positions defined by the targets’ range and cross-range. The
images obtained using the transform of the received signals
are called the inverse synthetic aperture radar (ISAR) images.

Having only few scattering points of the target, an ISAR
image is considered as a sparse signal. That means that it
has a small number of nonzero valued samples in comparison
to the total length of the received signal. According to the
theory of sparse signal processing and compressive sensing
(CS) [1]–[3], a sparse signal can be reconstructed from much
fewer samples than the sampling theorem requires. The set
of available samples can be reduced for a number of reasons.
Randomly positioned samples could be the result from heavily
corrupted parts of the signal. These parts are then omitted and
declared as unavailable, before the ISAR image recovery is
done. Measurements and physical constraints of the target and
radar interferences may also cause that only a small number
of the randomly positioned data is received and measured. It
can also be that the technique of sparse signal processing is
applied and a reduced set of data is used. The application of
the sparse signal processing and CS theory to the ISAR images
was studied in recent years [4]–[11].

In this paper, the case of nonuniformly positioned available
samples is considered. As it is common in the ISAR we
will consider only the Doppler part of the signal. Since this
part of the received signal will be considered, it means that
the received chirps are available at nonuniform positions.
There are two sources of randomness in the initial estimate.
The first one is the lack of synchronization, causing random
shift in sampling positions. The second one is that only a
random subset of the full set of samples is available. The

special cases when the positions are uniformly and randomly
positioned are examined in [12]–[21]. In this paper, we will
generalize the formula for the variance of the initial estimate,
analytically defining the transition from the uniform to the
random sampling. The theory will be verified on numerical
examples.

The paper is organized as follows. After the introduction in
Section I, the model of the signal with some basic definitions
is presented in Section II. The idea of reduced set of mea-
surements is explained in Section III, along with theoretical
analysis of the initial estimate variance. Examples are shown
in Section IV. The conclusions are presented in Section V.

II. SIGNAL MODEL AND BASIC DEFINITIONS

The Doppler part of the received signal, after the distance
compensation, from the l-th scattering point is

xl(t) = Ale
j2⇡!lt, (1)

where !l = 2⌦0yl0!RTr/c is the constant (frequency of the
received signal) proportional to the velocity (cross-range yl0)
and t is the slow-time. The variables ⌦0,!R, Tr represent
the radar operating angular frequency, carrier frequency and
the single-chirp repetition time, respectively. Assuming K
scattering points the total received signal is

x(t) =
KX

l=1

xl(t). (2)

Observe the case when the chirps are transmitted or received
at nonuniform instants tn = n+ ⌫n with 0  n  N � 1. In
that case, the sampling of the Doppler part of received signal
x(tn) will be nonuniform. The instants tn = n correspond
to the discrete time values obtained in accordance with the
sampling theorem, and ⌫n is a random variable with a uniform
distribution, where ��/2  ⌫n  �/2. The variable ⌫n
is a random shift (caused intentionally or by the lack of
synchronization). Without loss of generality, we have assumed
a normalized sampling step in the sampling theorem �t = 1.
Two special cases of this among are the uniform sampling
for � = 0 and the random sampling for a large �. We will
assume that a complete form of the signal has N samples. If
the received signal is a K-component signal, with frequencies
!l on a sampling grid, then it assumes the following analytical
form

x(tn) =
KX

l=1

Ale
j2⇡
N kltn , (3)
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for kl 2 {0, 1, . . . , N � 1}. The discrete calculation requires
integer indices. It means that only the target at the grid will
have a sparse nature. However, this is not satisfied. Even
one point reflector on an off-grid point then have nonzero
values over the whole grid of integer points in the range/cross-
range domain and the signal becomes nonsparse. The goal is
to calculate the DFT of this signal using a reduced set of
nonuniformly sampled signal values.

III. REDUCED SET OF MEASUREMENTS

Assume that a reduced set of M random signal samples
(measurements) is available, where M  N . If the full set of
time instants is denoted by ⇤ = {t0, t1, . . . , tN�1}, then the
subset of time instants where the measurements are available
is ⌦ = {tn1 , tn2 , ..., tnM } ✓ ⇤. Since the random set of
available samples is used, the subset of positions tni is random.
Observe that

ni 2 MA = {n1, n2, . . . , nM},

where MA ✓ N = {0, 1, . . . , N � 1}. In the case of a
reduced set of samples, the signal can be written in the form
of measurements (within the compressive sensing notation) as

y = AX (4)

where the available signal samples at ⌦ = {tn1 , tn2 , ..., tnM }
are denoted by

y = [x(t1) x(t2) . . . x(tM )]T . (5)

The elements of the measurement matrix A are

a(ni, k) = e
j2⇡
N ktni (6)

for i = 1, 2, . . . ,M and k = 0, 1, . . . , N � 1. The initial
estimate in the reconstruction algorithms plays a crucial role,
and, in general, it determines the reconstruction efficiency in
an implicit way. The initial DFT estimate is obtained as

X0 = AHy. (7)

The initial estimate of the DFT coefficients of the signal x(tn)
can be written as

X0(k) =
X

n2MA

x(tn)e
�j

2⇡
N tnk. (8)

For a random set of instants where the signal is available
and random deviation of the instants, the coefficients X0(k)
are random variables [21]. Properties of these random variables
are crucial in the reconstruction.

A. Monocomponent signal
Aiming to calculate the basic parameters of the initial

DFT coefficients as random variables, first we observe a
one-component signal, i.e. K = 1, with amplitude A1 and
frequency k1. The initial DFT of this signal reads

X0(k) =
X

n2MA

A1e
j
2⇡
N (k�k1)tn

=
X

n2MA

A1e
j
2⇡
N (k�k1)nej

2⇡
N (k�k1)⌫n . (9)

We will determine the mean value µX0(k) and the variance
�2
X0(k)

of the DFT coefficient acting as a random variable.
The mean value is

µX0(k) = A1

X

n2MA

E{ej 2⇡
N (k�k1)n}E{ej 2⇡

N (k�k1)⌫n}. (10)

It is easy to show [16] that

E{ej 2⇡
N (k�k1)n} = �(k � k1), (11)

where �(k�k1) = 1 for k = k1 and �(k�k1) = 0 for k 6= k1.
Now we will observe the term

µ⌫ = E{ej 2⇡
N (k�k1)⌫n}.

According to the definition of the expected value we get

µ⌫ =

�/2Z

��/2

p(⇥)ej
2⇡
N (k�k1)⇥d⇥

=
sin

�
⇡(k�k1)�

N

�

⇡(k�k1)�
N

= sinc

✓
⇡(k � k1)�

N

◆
, (12)

where the probability density function p(⇥) = 1
� is used

for the uniform random variable ⇥ = ⌫n within the interval
[��

2 ,
�
2 ]. This result will be used in the derivation of the

variance. For k = k1, we get µ⌫ = 1.
For M terms in (10), we get

µX0(k) = A1M�(k � k1). (13)

In order to determine the variance of X0(k), the analysis
will be conducted for two possible cases: k 6= k1 and k = k1.

• For k 6= k1, the mean value of the DFT coefficient is
equal to zero, i.e. µX0(k) = 0. In that case, the variance
is calculated by definition as

�2
X0(k)

=
X

n2MA

X

m2MA

|A1|2E{ej 2⇡
N (k�k1)(n�m)}

⇥ E{ej 2⇡
N (k�k1)(⌫n�⌫m)}. (14)

For the second expected value appearing in (14) and for
n 6= m, we obtain

E{ej 2⇡
N (k�k1)(⌫n�⌫m)}=E{ej 2⇡

N k1⌫n}E{ej 2⇡
N k⌫m}= µ2

⌫

as expectations over ⌫n and ⌫m are independent (k 6= k1).
For n = m, the analyzed expectation becomes

E{ej 2⇡
N (k�k1)(⌫n�⌫m)} = 1.

It has been previously established in [16] that for random
n 6= m and k 6= k1 variables ej

2⇡
N (k�k1)n are equally

distributed, producing expectation

E{ej 2⇡
N (k�k1)(n�m)} = � 1

N � 1
. (15)

Otherwise, for n = m, the complex sinusoid is determin-
istic, and relation E{ej 2⇡

N (k�k1)(n�m)} = 1 holds.
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In (14), there are M terms when m = n and M(M �
1) terms for m 6= n. Therefore, for k 6= k1 the DFT
coefficient variance becomes

�2
X0(k)

= |A1|2M

1� M � 1

N � 1
sinc2

✓
⇡(k � k1)�

N

◆�
.

(16)

As it is expected, for � ! 0 the term

sinc

✓
⇡(k � k1)�

N

◆
=

sin(⇡(k�k1)�
N

)

⇡(k � k1)�/N
! 1,

leading to

�2
X0(k)

= |A1|2
M(N �M)

N � 1
.

This is the variance for the initial estimate with a reduced
set of samples on the uniform discrete time grid [16].
Moreover, for a large �, such that the second term in the
variance can be neglected, we get the other special case
of fully random signal sampling [21]

�2
X0(k)

= |A1|2M.

In general, the variance is dependent on frequency. The
average value of the variance can be used as an frequency
independent estimate. It depends on the parameter

S(�) =
1

N

NX

k=1

sinc2
✓
⇡k�

N

◆
.

The value of this variance parameter cannot be calculated
analytically. Its value for various � (or �/N ) is shown
in Fig. 1. The average value of variance is then

�2
X0(k)

= |A1|2M
⇥
1� M � 1

N � 1
S(�)

⇤
. (17)
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Fig. 1. Variance prameter S(�) for N = 256 and various �.

Very simple heuristic expressions can be used for approx-
imation of S(�) as S(�) = 1/(1 + 1.2�2) for � < 1
and S(�) = 1/(1+2�)+1/(1+8�2) otherwise, shown
in dots in Fig. 1 for N = 256.

• For the second considered case, when k = k1, it is easy
to obtain that

�2
X0(k)

= 0.

The general result for the variance for any frequency index
k is

�2
X0(k)

= |A1|2M

1� M � 1

N � 1
sinc2

✓
⇡(k � k1)�

N

◆�

⇥
⇥
1� �(k � k1)

⇤
. (18)

Observe that mean value and variances depend on k � k1.
It is interesting to note that the variance is a function of (k�
k1)�. This observation will be confirmed by numerical results.

B. Multicomponent signals

In the case of K-component signals, the observed random
variable is

X0(k) =
X

n2MA

KX

l=1

Ale
j
2⇡
N (k�kl)nej

2⇡
N (k�kl)⌫n . (19)

This is a summation of independent random variables.
Therefore, using (13), the mean value of the random variable
X(k) takes the following form:

µX0(k) =
KX

l=1

AlM�(k � kl). (20)

The variance of the DFT coefficients at positions k 6= kl, l 6=
1, . . . ,K, has the form of a sum of variances (16)

�2
X0(k)

=
KX

l=1

M |Al|2

1�M � 1

N � 1
sinc2

✓
⇡(k � kl)�

N

◆�
(21)

since the missing samples from each signal component con-
tribute to the noise. These noises are uncorrelated, with zero
mean and variances defined by (16).

For the DFT coefficient at a signal component position
k = kp, p = 1, . . .K, the missing samples in the pth
signal component do not contribute to the resulting variance.
However, remaining K � 1 components at positions k =
kl, l 6= p, l = 1, . . . ,K contribute to the resulting initial
estimate noise at k = kp. Their variances are defined by
(16). Therefore, the resulting variance at a signal component
position k = kp, p = 1, . . .K is

�2
X0(k)

=
KX

l=1
l 6=p

M |Al|2

1�M � 1

N � 1
sinc2

✓
⇡(k � kl)�

N

◆�
.

(22)

The average value of this variance is

�2
X0(k)

=
KX

l=1
l 6=p

M |Al|2

1�M � 1

N � 1
S(�)

�
. (23)

It is frequency invariant.
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IV. NUMERICAL RESULTS

The obtained theoretical expressions for variances of DFT
coefficients are next verified numerically.

First, we check a monocomponent signal on a frequency
k1. The theoretical and statistical results for k1 � k =
65, 75, 100, 155, 200, and 255 are presented in Fig. 2. The
numerical results for variances are obtained based on 2000 in-
dependent realizations of signals samples available at instants
from set ⌦ = {tn1 , tn2 , ..., tnM } with random ni 2 MA,
and random deviations ��/2  ⌫n  �/2. The results
are averaged over realizations for each considered value of
parameter �. In all experiments, Fig. 2 (a)-(f) parameter �
was varied from 0 to 4 with step 0.2. We can see that the
diagrams are scaled version of each other along the �-axis.
Since the variances are functions of (k1 � k)� obviously the
values in Fig. 2(c) for 0  �  4 correspond to the values in
Fig. 2(e) for 0  �  2. The results in Fig. 2 are shown for
four different values of available samples M .

∆
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Fig. 2. Variance of the DFT coefficient at position k = 3, k 6= k1 acting as a
random variable in the case of signal with M = Mi, i = 1, 2, 3, 4 samples
available at tn = ni + ⌫n, where ��

2  ⌫n  �
2 . Variances are shown

as functions of �. Four values of M are considered: M1 = 70, M2 =
130, M3 = 190 and M4 = 250. Results are shown for various k1, (a)-
(f). Lines represent theoretical values, whereas asterisks correspond to the
numerical results.

Graphs of the variances as a function of k1 � k, for three
different values of � = 0.1, 5, 30 and M = 25, 150, 200 are
presented in Fig. 3. In this experiment, the numerical results
are obtained averaging the results for 12000 independent
realizations of signals with randomly positioned samples at
ti 2 ⌦, i = 1, ...,M.

Finally, a three-component signal

x(tn) =
3X

l=1

Ale
j2⇡
N kltn , (24)

with k1 = 15, k2 = 63, and k3 = 192 and unity amplitudes is
considered. Its theoretical and statistical variances as functions
of k are presented in Fig. 4.

In all cases the agreement between the theory and statistics
is very high.
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Fig. 3. Variance of the DFT coefficient as a function of k1�k in the cases of
a signal with: M = 25 available samples (top), M = 150 available samples
(middle), and M = 200 available samples (bottom). Three values of � are
considered: �1 = 0.1,�2 = 5, and �3 = 30. Lines represent theoretical
values, whereas dots correspond to the numerical results.

V. CONCLUSIONS

The results for variances of nonuniformly sampled signal
and a reduced set of samples are derived and verified. The
results for a subset of uniformly sampled signals and randomly
sampled signals follow as the special cases. These results will
be used in our future work to define the reconstruction condi-
tions and to calculate a threshold for one step matching pursuit
reconstruction algorithms in ISAR. The obtained results will
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Fig. 4. Variance of the DFT coefficient as a function of k in the case of
signal with three components with: k1 = 15, k2 = 64 and k3 = 192 with
M = 150 available samples. The results are presented for three considered
values of �: �1 = 0.1,�2 = 5, and �3 = 30. Lines represent theoretical
values, whereas dots correspond to the numerical results.

also be used to derive the error in the final, real data, ISAR
signal reconstruction using a reduced set of samples when
the sparsity condition is not satisfied. This will enable the
analysis of the cases when both the signal samples and the
transformation coefficients are off-grid.
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