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Abstract—Wide angle synthetic aperture radar (WASAR) re-
ceives data from a large angle, which brings the problem of aspect
dependent scattering. The subaperture approach can accommo-
date for it. However, the scattering recovery is not so accurate.
In this paper, we propose a novel WASAR imaging method
based on least squares on compressed sensing residual (LS-CS-
Residual). LS-CS-Residual is to replace compressed sensing (CS)
on the observation by CS on the least squares (LS) residual
computed using the previous estimate of the support. It can
achieve accurate recovery compared with CS. The support sets
of the subapertures are highly overlapped across the whole
aperture. We first implement backprojection (BP) on the whole
aperture data and estimate the support from the BP image.
Then we perform LS-CS-Residual on the subapertures. The
WASAR imaging based on LS-CS-Rresidual can recover the
aspect dependent scattering better than CS and can recover the
scene with less artifacts. Real data processing results validate the
proposed method.

Index Terms—wide angle, aspect dependent, LS-CS-Residual.

I. INTRODUCTION

Wide angle synthetic aperture radar (WASAR) receives
echoes from a large angle. The azimuth resolution can be
increased and more scattering of the targets can be obtained.
However, it brings the problem of aspect dependent scattering
[1] [2]. Aspect dependent scattering is brought by especially
the man-made targets [3]. The traditional imaging methods
are based on the isotropic assumption which means that the
scattering is isotropic in the synthetic aperture angle. It does
not hold for WASAR.

To accommodate the aspect dependent scattering, there are
mainly two approaches, the subaperture approach and full
aperture approach. The subaperture approach [1] [2] divides
the whole aperture into the subapertures and assumes that the
scattering holds in the subaperture. Then the narrow angle
imaging methods such as matched filtering, non-quadratic op-
timization can be adopted for the subaperture imaging. For the
full aperture approach, they can be divided into two kinds. The
first one assumes that the scattering during one subaperture is
isotropic and construct imaging models with all subapertures
included [4-6]. The imaging models are recovered jointly. The
other is the parametric method [7-9]. It assumes that the scene
includes some scattering targets and their scattering follows

some functions. The scattering functions of the targets are
fitting with the whole aperture data included. The subaperture
approach often faces inaccurate aspect dependent scattering
recovery. During some downsampled rate, there are also some
artifacts remained in the recovered image.

In this paper, we proposed a novel subaperture imag-
ing method based on least squares on compressed sensing
residual (LS-CS residual) [10]. The proposed method firstly
implements Backprojection (BP) on the whole aperture data.
Then the coarse support set is estimated from the BP image.
The least squares estimate on the support set is calculated.
Then the observation residual is calculated. With the residual
data, we can solve the residual observation model with L1

regularization. The accurate supports of subaperture images
are estimated from the L1 regularization image. Finally, the LS
estimate on the accurate supports is calculated. The proposed
method can recover the aspect dependent scattering more
accurately than the subaperture method. The result of LS-CS
has less artifacts.

This paper is organised as follows. In Section II, we
introduce the WASAR imaging model. Then LS-CS-Residual
based WASAR imaging method is proposed. In Section IV, we
use the simulations and experiments to validate the proposed
method. Finally, the conclusion is provided in Section V.

II. WASAR SUBAPERTURE IMAGING MODEL

WASAR receives echoes from a large angle. The geometry
of WASAR is shown in Fig. 1 .

Fig. 1. The geometry of WASAR.
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The subaperture imaging method divides the whole aperture
into subapertures. Subaperture data are processed individually.
We consider the i-th subaperture at aspect angle θi. The phase
history data is formulated as

ri(fp, θq) =
M∑
m=1

N∑
n=1

si(xm, yn) · exp{−j
4πfp
c
·

(xm cos(θq) + yn sin(θq))}+ zi

(1)

where r is the phase history data, s is the scattering reflectivity
located at (xm, yn), fp (p = 1, 2 · · ·P ) is the frequency, c is
the light velocity, θq (q = 1, 2 · · ·Q) is the aspect angle, zθi
is the noise at aspect angle θi.

(1) can be expressed in a compact form

ri = Φi · si + zi (2)

where ri is the history data of θi in vector form, sis is the
scattering of i, Φi is the measurement matrix, zi is the noise.

The subaperture imaging methods for WASAR imaging
assume that the scattering of the scattering is not relevant
to the aspect angle in a little angle range. Then traditional
imaging method such as BP, feature enhanced method can be
implemented for subaperture image focusing. When the scene
is sparse and the matrix satisfies RIP [14], (2) can be solved
via the following expression

min
si

‖ri −Φi · si‖22 + λ‖si‖1. (3)

III. WASAR IMAGING BASED ON LS-CS-RESIDUAL

In this section, we propose a novel WASAR imaging based
on LS-CS-Residual. We first introduce LS-CS-Residual. Then
the detailed algorithm is given. To avoid the high memory cost
in the real scene imaging, the azimuth-range decouple scheme
is adopted in LS-CS-Residual based WASAR imaging.

A. LS-CS-Residual

CS focuses on the simple sparsity. In real world, there exists
other sparse pattern. For example, the support of the vector
slowly changes with time. To solve the aforesaid problem,
one can solve it with CS. However, it indicates that the prior
information is not used in the recovery, which would need
more measurement. LS-CS-Residual [10] has been proposed
for dynamic CS problems. The key idea of LS-CS-Residual
is to replace CS on the least squares residual computed using
the previous support estimation. It is shown that it needs less
samples and the bounded reconstruction error is less than the
traditional CS. For Eq. (1), if the support set of si is known,
we could simply compute the LS estimate on the support while
setting all other values to zeros. The previous support can be
estimated from the prior information. Suppose the estimated
support is T , to compute and initial LS estimate

(si,init)T = (ΦiT )
†ri, (si,init)T c = 0 (4)

where Φi
†
T =

(
Φi

H
T ΦiT

)−1
Φi

H
T , TC denotes the comple-

ment of T .
Then the LS residual is calculated as

ri,res = ri −Φisi,init. (5)

LS-CS-Residual includes the following steps.
Firstly, the LS estimation is calculated with (4). Then the

LS residual can be calculated from (5). CS is implemented on
the LS residual

min ‖ri,res −Φiβi‖22 + λ‖βi‖1. (6)

Iterative shrinkage thresholding algorithm (ISTA) [18] can be
adopted to solve (6). ISTA is used to solve (6). The iteration
is formulated as

β̂ti = β
t
i + µ

[
ΦH
i (ri −Φiβ

t
i)
]
, (7)

βt+1
i = fλµ

(
β̂ti

)
=

{
sgn(β̂ti)(|β̂

t
i| − λµ), if |β̂ti| > λµ

0, otherwise.
(8)

where µ ∈ (0, ‖Φi‖−22 ) is the step size controlling the con-
vergence, λ is the regularization parameter, f is the iterative
function of ISTA. In the iteration, the value of λ is

λ = |β̂ti|K+1/µ (9)

where |β̂ti|K+1 is the (K + 1)-th largest element of β̂ti and
K = ‖β̂ti‖0.

The final estimation is

ŝi = βi + si,init. (10)

It is shown that βi is obtained after L1 regularization, the
estimation will be biased to towards zeros. Thus a debiased
step is needed

T ′ = supp(ŝi), (11)

siT = (ΦiT ′)†ri, siT ′C = 0. (12)

After the construction of the subaperture images, the gen-
eralized likelihood ratio test (GLRT) [2] can be implemented
for the final composite image. GLRT is defined as

sx,y = max
i
|six,y| (13)

where six,y is the scattering at pixel (x, y).

B. LS-CS-Residual Based WASAR Imaging

In WASAR, the scattering of the targets is aspect dependent.
However, the support sets of the subaperture images are highly
overlapped, which means that a fairly accurate support T can
be estimated from the data. T is estimated via

T = supp(s0 : |s0| > α) (14)

which is the support of the elements whos amplitudes are
larger than α. In [13], the threshold α is determinded by the
b%-Energy support which means that T contains at least b%
of the signal energy. The prior knowledge is usually not very
accurate. However, [13] shows that T can contain some errors.
In WASAR imaging, we set b% = 90%.

Then with the known support, LS-CS-Residual can be im-
plemented for WASAR subaperture imaging. Backprojection
can serve to approximate an inverse operator by the adjoint
operator. This adjoint operator is the matched filter for ideal
point scattering. This adjoint operator is the matched filter for
ideal point scattering.
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TABLE I
WIDE ANGLE SAR IMAGING BASED ON LS-CS-RESIDUAL

Input: Subaperture echo data ri (i = 1 : I and I is the number of the subapertures), measurement matrix Φi,

iterative parameter µ, error parameter ε = 10−6, maxmum number of iterative steps Tmax.

Initialization: Implement BP on the whole aperture data, estimate T from the BP image.

si = 0 (i = 1 : I), t = 0.

Iteration: for i = 1 : I

(si,init)T = (ΦiT )
†ri, (xi,init)Tc = 0,

ri,res = ri −Φisi,init

β0
i = 0

Res = ε+ 1;

While t < Tmax and Res > ε

βt+1
i = fλµ(β

t
i + µ

[
ΦHi (ri −Φsti,res)

]
)

Res = ‖βt+1
i − βti‖2;

t = t+ 1;

end while;

ŝi = β
t+1
i + xi,init

T ′ = supp(ŝi)

si = AT ′†yi

end for .

GLRT: sx,y = maxi |six,y |.

In large scale SAR imaging problem, restoring the measure-
ment matrix could cost huge memory, which is unbearable
for most of the computers. Instead of calculating the LS
estimation, we implement BP firstly. BP alone serves to
approximate an inverse operator by the adjoint operator. This
adjoint operator is the matched filter for ideal point scattering.
So the result can be regarded as the least squares estimation,
which would be adopted in LS-CS-Residual based WASAR
imaging.

After the construction of the subaperture images, the gen-
eralized likelihood ratio test (GLRT) [1] can be implemented
for the final composite image. GLRT is defined as

sx,y = max
i
|six,y| (15)

where six,y is the scattering at pixel (x, y).
The algorithm is summarized in Tabel I.

C. Azimuth-Range Decouple Scheme

In real SAR data imaging, implementing CS on the data
faces huge memory cost. Because the storage of the measure-
ment matrix and its complex conjugate transpose cost huge
memory, which is unbearable for most of the computer. We
take scene size to be 1024×1024 and the raw data size is also
1024× 1024. Every complex number occupies 16 bytes. The

memory cost for the measurement matrix is more than 16 TB.
To reduce the memory, [12] and [15] proposed an azimuth-
range decouple scheme. The azimuth-range decouple method
substites the measurement matrix and its complex conjugate
transpose with the traditional matched filter method based
operators.

In WASAR, the scattering of the subaperture can be re-
garded as isotropy. BP is implemented in subaperture imaging.
In this paper, we take BP based operators in real WASAR
subaperture imaging.

BP mainly include two operations, Fourier transform and
azimuth coherent addition. Assume the BP based imaging
process is I(·) and data generation process is G(·). I(·) and
G(·) is formulated as

I {·} ∼= R−1{H{F−1{R{·}}}}, (16)

G {·} ∼= R{F{H−1{R−1{·}}}} (17)

where F and F−1 are the the Fourier transform pairs, H is
azimuth coherent addition operator and (H)−1 is its inverse
operation,R reshapes the vector into matrix andR−1 reshapes
the matrix into vector.

We now consider the memory cost. Without loss of gen-
erality, PQ is supposed to be equal to MN . Since the
proposed method only needs to store the input, output and
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(a)

(b)

(c)

Fig. 2. Results of the three models. (a) GLRT result of CS. (b) GLRT result
of LS-CS. (c) GLRT result of MCS.

several matrices, its memory cost is O(PQ) bytes. In com-
parison, without adoption of azimuth-range decouple scheme,
the memory cost of the measurement matrix and its conjugate
transpose is O((PQ)2) bytes. The proposed method reduces
the memory cost dramatically and makes the large scale real
data processing possible.

IV. EXPERIMENTAL RESULTS

In this section, we use real data collected by the Institute
of Electronics, Chinese Academy of Sciences to show the
effectiveness of the proposed method. The real data of a
metal tank model are measured in an anechoic chamber on
a turntable, which is in uniform circular motion. The radar
is a stepped frequency type and has a center frequency of
15 GHz and bandwidth 6 GHz. The 360◦ whole aperture is
divided into 36 subapertures. The pixel size of the SAR image
is 0.25cm×0.38cm. We reconstruct the subaperture images
with CS and LS-CS. In the experiment, we also implement
another model called Modified compressed sensing (MCS)
[13] [17], which also adopts the partial known information
in the subaperture reconstruction. Fig. 2 (a), (b) and (c) show
that the three models can reconstruct the targets. However, for
LS-CS and MCS, the support is estimated from the BP image
which is generated with all subaperture data. The resolution of
BP is higher than the subaperture images, which means fairly
accurate partial known support estimation. Thus, less sidelobes

Fig. 3. Aspect dependent scattering curve of P.

remain in the GLRT image of LS-CS and MCS than those in
the GLRT image of CS.

Fig. 3 is the aspect dependent scattering of the selected
target. The scattering is normalized. It is shown that the three
can reconstruct the main scattering of the targets. However,
CS may fail to reconstruct the weak scattering. Since the prior
information are adopted in LS-CS and MCS, the supports of
weak scattering targets are preserved in the subapertures. So
LS-CS and MCS can recover the aspect dependent scattering
more accurately than CS.

V. CONCLUSION

This paper has proposed a novel WASAR subaperture
imaging algorithm based on LS-CS-Residual. Backprojection
is first implemented with whole aperture data to estimate the
partial known support. Then the subaperture images are re-
constructed individually with LS-CS-Residual. Backprojection
based azimuth-range decouple operators are implemented in
the reconstructions of subaperture images. Compared with
the traditional compressive sensing, the proposed method
can reconstruct the scattering more accurately. The proposed
method can also reconstruct the scene with less undesirable
artifacts.

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China (grant no. 61571419).

REFERENCES

[1] R. L. Moses, L. C. Potter, and M. Çetin, ”Wide-angle SAR imaging,” in
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