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Abstract—Guided-wave structural health monitoring is con-
cerned with the detection and localization of defects in thin
structures using guided ultrasonic waves which are actuated
and sensed by a permanently installed array of piezoelectric
transducers. In this work, we analyze sparse recovery algorithms,
including Orthogonal Matching Pursuit (OMP), Compressive
Sampling Matching Pursuit (CoSaMP), Basis Pursuit De-Noising
(BPDN) and Iterative Hard Thresholding (IHT), by studying
model-based imaging in a metallic plate possessing a single and
multiple damages. A comparison to conventional Delay-and-Sum
(DAS) imaging is given based on experimentally obtained data
alongside a statistical analysis based on simulations.

I. INTRODUCTION

Regarding signal and image processing there is significant
methodological overlap between radar, terahertz applications
and systems using guided ultrasonic waves (GUW), because of
the similar challenges faced in each of the disciplines. GUW
are frequently utilized [1], [2] for evaluating automatically
the integrity of structural components, which appear thin
compared to the wavelength λ of the GUW. With solely minor
dissipation of energy, GUW can travel large distances inside
solid structures, including paths across curved walls. Damage
assessment using GUW is typically facilitated by a network
of transducers which is distributed across the component. In
a round-robin manner one actuator excites omnidirectional
waves and subsequently sensors acquire the response con-
taining scattering from potential defects. Analysis is then
commonly applied to the differential signal, i.e. the residuum
between measurements from the intact and damaged structure.
Conventionally, less dense networks yield high coverage at
the cost of lower spatial resolution. Therefore, a parsimonious
ansatz rooted in compressed sensing, is promising in signal
recovery scenarios for enhancing localization performance as
compared to more classical methods.

In Ref. [3] sparse wavenumber analysis has been employed
for reconstructing the multimodal and frequency dispersive
properties of GUW propagating in a plate with surface-
mounted transducers in order to de-noise signals as well
as subtract multipath reflections. In Ref. [4] deconvolution
processing has been used for improving the imaging of the
sparse acoustic wavefield of an impaired plate which has been

scanned using a Laser Doppler Vibrometer. In Ref. [5] a
simulation-based dictionary alongside sparse reconstruction,
which assumes a structural component to be largely flaw-
less, has been employed for localizing defects in a metallic
plate with an array of permanent sensors. This approach has
also been studied for potential application in microwave breast
cancer detection [6]. Moreover, this approach is deployed and
extended in the present work where different sparse recovery
algorithms are analyzed for detection and localization in a
guided-wave structural health monitoring system.

II. THEORETICAL BACKGROUND

A. Lamb Waves

In plate-like solids which exhibit two free boundary sur-
faces, GUW can be divided into two types. First, the shear-
horizontal type shows particle movement vertical to the di-
rection of propagation and parallel to the surfaces. Second,
Lamb-type waves show similarly particle movement vertical
to the direction of propagation, but furthermore vertical to
the surfaces. The frequently encountered scenario in guide-
wave monitoring with surface-mounted piezoelectric transduc-
ers mostly generates Lamb-type waves.

They exhibit two different variants of wave modes: sym-
metric and anti-symmetric modes that are labeled S0, S1, . . .
and A0, A1, . . . , respectively. The modes show frequency-
dependent wave velocities v(f) and can be interpreted as
standing waves across the thickness d of the plate. For any
thickness-frequency product d · f distinct symmetric and anti-
symmetric modes can emerge. The greater d ·f , the larger the
number of modes. In the present work, the plate has d = 1.5
mm and we consider frequencies f ≤ 500 kHz, therefore only
both fundamental modes S0 and A0 can be excited with S0
propagating faster [1].

Numerical simulations of Lamb waves in an isotropic and
homogeneous solid, such as an aluminum plate, are carried
out by solving the elastodynamic wave equation, taking mass
density ρ, Young’s modulus E and the Poisson ratio ν (or their
equivalents) as parameters.
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B. Problem Formulation
Generally, we consider a pre-recorded time-domain baseline

signal ybase(t) from the pristine structures without defects.
For defect detection the difference signal ydiff(t) is calculated
containing both information about scatterers and an additional
noise term:

ydiff(t) = ymeasured(t)− ybase(t) = yscattered(t) + e(t) (1)

The γ-th signal ymeasured
γ

is obtained by a pitch-catch mea-
surement between a pair of transducers. A total number of P
signals is acquired. Each signal possesses L samples.

In a linear formulation of the problem

ydiff
γ

= A
γ
· x+ eγ (2)

the differential signal is assumed to contain a linear superposi-
tion of scattering effects by localized damages. The monitored
area is represented by x ∈ RM where each non-zero entry xm
should represent a defect in the plate at pixel m ∈ {1,M} and
A
γ

is the dictionary of transducer pair γ. Thus aγ,m is the m-
th column of A

γ
, corresponding to the expected difference

signal of a defect located at pixel m. This expected difference
signal and thus the dictionary is generated by numerical
simulation of GUW. The dictionary is a collection of simulated
signals stemming from a scatterer at every possible point in
the discretized plate.

If we treat all transducer pairs, we get a system of equations:

ydiff
1

= A
1
· x+ e1

ydiff
2

= A
2
· x+ e2

...

ydiff
P

= A
P
· x+ eP (3)

Since x is the same in all equations, we can finally con-
catenating all ydiff

γ
yielding ydiff ∈ RL·P and all dictionaries

yielding A ∈ RL·P×M .

C. Recovery Algorithms
So as to approximate solutions, we employ different sparse

recovery algorithms which we briefly review, for details how-
ever the reader is referred to the original publications.

1) OMP: It casts the problem into the minimization:

min
x
||y −A · x||2 with ||x||0 ≤ S (4)

where S denotes a given sparsity of the solution, the number
of non-zero entries in x and where ||...||0 denotes the zero
norm. This greedy algorithm attempts to find the pixel which
minimizes the residual in each of the S iterations [7].

2) CoSaMP: It is similar to OMP, but possesses theoretical
performance guarantees [8]. Mathematically the solution is
cast as the optimization problem:

||x− a||2 ≤ C ·max
x

{
η,

1√
S
||x− xS

2
||1 + ||e||2

}
(5)

where C denotes a constant bound, a is the computed signal
approximation, η is the given precision and xS

2
is the best S

2
sparse approximation of x.

3) BPDN: It performs a convex optimization [9]:

min
x

1

2
||y −A · x||2 + µ||x||1 (6)

where µ is a regularization parameter.
4) IHT: It belongs to the class of iterative algorithms

with thus low computational complexity and small memory
requirements. In iteration k IHT approximates the signal x as
xk [10]:

||x− xk||2 ≤ 2−k||xS ||2 + 5εS (7)

where

εS = ||x− xS ||2 +
1√
S
||x− xS ||1 + ||e||2 (8)

IHT does this by successively applying the formula:

x[n+1] = Hs

(
x[n] +AT · (y −A · x[n])

)
(9)

where the thresholding operator Hs sets all but the s-highest
entries to zero. It is known that IHT can suffer from slow
convergence [11].

5) Conventional Imaging: We compare the sparse recovery
algorithms against classical DAS imaging which is also used
in radar systems to perform synthetic focussing [12]. Here,
for each pixel m the time-domain signal of each of the P
actuator-sensor-combinations is delayed by τ according to the
length D = DA + DS of the path from actuator to pixel
DA and the path from m to the sensor DS . Hence, the
wave’s group velocity v is required. The delayed signals are
uniformly superimposed in order to build up a spatial intensity
distribution where high intensities correspond to potential
scatterers [13].

III. SETUP AND PRE-PROCESSING

In general, for the simulation studies and the experiment,
the same arrangement is considered: a thin aluminum plate
with dimensions 500 x 500 x 1.5 mm and twelve piezoelectric
surface-mounted transducers which are placed near the edges
of the plate with six on each of the opposite sides of the
same surface. The exact positions are shown in Fig. 1. For the
measurement a multichannel device [14] records the pitch-
catch signals in round-robin turns.

Measured signals are smoothed using a median filter of win-
dow width 3. For further processing, we extract only the first
wave packet of the multimodal signal. This is accomplished by
detecting the onset of the packet using a significant increase
in the signal’s envelope.

IV. RESULTS

A. Single-defect Imaging

First, we study experimentally a plate with one through-
hole. For construction of the simulation-based dictionary, its
area is partitioned into 40 x 40 pixels. The results employing
GUW with f = 200kHz are displayed in Fig. 1.

For OMP, sparsity must be chosen a priori: we set S = 10
which is higher than the number of defects expected inside
a previously pristine component. So as to omit unreasonable
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Fig. 1. Comparison of OMP, IHT, BPDN and DAS (from left to right, top to bottom). True position of the defect is marked by the circle. Transducer positions
are labeled by number. Intensities are normalized to lie in the interval between 0 and 1.

solutions, negative entries are removed from the solution
vector. OMP successfully localizes the damage with sharp
resolution (1 pixel), but some spurious spots (with smaller
amplitude) close to the actual scatterer emerge. The spots
appear because of the over-estimated level of sparsity. They
vanish for reconstruction using S = 1. CoSaMP has not been
included as a separate plot, because it yields results equivalent
to OMP, but at slower run time.

Also for IHT entries below zero are zeroized in the solution
vector. IHT is run for 30 iterations. In Fig. 1 IHT leads to
a clear localization of the damage and one pronounced side
peak. We have found that the more iterations used, the better
are the results regarding falsely detected defects.

BPDN is also run for 30 iterations, values less than zero
solution-entries are removed. BPDN yields a maximum at the
damage’s location, however also clutter in the remaining area.

The non-sparse approach DAS leads to a continuous inten-
sity distribution with a correct maximum at the through-hole
position.

B. Multiple-defects Imaging

Then we investigate experimentally a plate with three
through-holes, but other parameters remain unchanged. Results
are given in Fig. 2.

Again CoSaMP leads to similar results like OMP.
OMP/CoSaMP sharply reconstructs two defects. A recovered
peak lies close to the actual third damage, but due to its
reduced intensity it is hard to discriminate between true defect
and spurious spots.

IHT finds the three defects, but also generates further peaks
with about the same amplitude. The size of the found damages
is not as sparse as the OMP/CoSaMP results. This can be
caused by the small number of 30 iterations.

BPDN reconstructs the holes, but the reconstructed intensity
is blurred making it impossible to identify the number of
defects. Again, clutter is present in the whole monitored area.

With DAS one cannot distinguish between all three points
because the maxima overlap significantly, however strong
intensity is correctly assigned to the actual position of the
three damages.
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Fig. 2. Comparison of OMP, IHT, BPDN and DAS (from left to right, top to bottom). True positions of the defects are marked by circles.

C. Statistical Study of Single-defect Intensity Recovery

In order to further analyze the sparse recovery algorithms,
we conduct numerical simulations where the intensity, i.e.
reflectivity, is varied. On 26 x 26 pixels grid, we place one
artificial scatterer and repeat the reconstruction procedure 200
times with different random amplitudes drawn from a uniform
distribution. Such a simulation set is performed for different
levels of noise where the signals are contaminated with
normally distributed noise having zero mean and a standard
deviation of

σ ·max
t

(ydiff(t)) (10)

where the noise level is denoted by σ and is given relative to
the maximal of the differential signal. Again, f = 200kHz.

In Fig. 3 the histograms of the relative recovered intensities
at the scatterer’s pixel is presented. Perfect reconstruction
corresponds to a single bin with relative frequency of 1 at
a value of 1 on the x-axis. The more the actual distribution
is shifted away from that ideal distribution, the worse we
consider the algorithm’s performance. We specifically compare
the statistical mean of each distribution.

Results for OMP and CoSaMP are nearly the same. We
present here the CoSaMP plot. At noise levels 0 and 0.1,

CoSaMP/OMP and BPDN exhibit roughly the same mean of
the respective distribution with IHT having a clearly lower
mean value. At noise levels 0.5 and 1.0, CoSaMP/OMP outper-
form both other algorithms with IHT being superior to BPDN
in this regard. However, in comparison to the other algorithms
IHT has the highest percentage of non-reconstructed cases
(meaning zero relative reconstructed intensity).

D. Analysis of Double-defect Intensity Recovery

Finally, we explore the ability of OMP to reconstruct two
flaws quantitatively. Here, a smaller plate with dimensions 250
x 250 x 1.5mm is considered. The first damage is fixed at its
center. For the second damage all other pixel positions out
of the 40 x 40 pixels are probed. We calculate the fraction
of damages that could be reconstructed as a function of radial
distance from the central flaw. At distances below 2cm, due to
the imposed discretization of the plate, not enough data points
were simulated to create a meaningful average. These small
distances are left out in Fig. 4.

With increasing frequency f the higher the fraction of points
that can be reconstructed at short between-defect distances.
This can be explained by the decreasing wavelength λ =
v(f)/f and hence increased resolution.
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Fig. 3. Comparison of CoSaMP, BPDN and IHT (from left to right). The definition of noise levels is discussed in the text.

V. CONCLUSIONS AND OUTLOOK

We have studied popular sparse recovery algorithms for
model-based damage imaging in a plate structure comprising
a single as well as multiple damages. Orthogonal Matching
Pursuit (OMP) as well as Compressive Sampling Pursuit
(CoSaMP) deliver equivalent results and localization of the
single defect with a resolution of 1 pixel and minor clutter.
For a scenario with three through-holes OMP/CoSaMP and
Iterative Hard Thresholding (IHT) yield the best results with
clear discrimination of individual scatters, although none of the
algorithms allow for the exact determination of the number of
the point-like flaws. Moreover, regarding the reconstruction
of defect intensities OMP/CoSaMP perform best on noise
contaminated signals. OMP is furthermore in our comparison
the algorithm with the fastest run time. However, we con-
sidered IHT in its original variant, disregarding subsequent
improvements in speed [11].
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