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Abstract—We develop a through-the-wall radar imaging

(TWRI) system using stepped-frequency radar for the detection

of stationary objects at close distances. This system uses the

random frequency sampling and a structural sparsity based

reconstruction method. The proposed reconstruction algorithm

employs the block sparse structure and smoothness character-

istics of the illuminated scene. In experiments on real data, we

show that the proposed sparsity-based reconstruction algorithm

outperforms the conventional `1 minimization-based radar imag-

ing results.

Index Terms—Compressive Sensing, Radar Imaging, Struc-

tural Sparsity, Random Frequency Radar Imaging

I. INTRODUCTION

A stepped-frequency system (SFS) [1] works based on
transmission of short electromagnetic waveforms at sequenced
frequency steps, and measurement of the magnitude of the
reflected signal and its phase difference with reference to the
transmitted signal. One can consider the SFS method as a
sampling in the frequency domain over a wide bandwidth.
Modulated short pulses at stepped frequencies achieve ultra-
bandwidth illumination of the medium, which is a crucial
requirement where both low and high frequencies need to
be employed as in the case of ground penetrating radar
(GPR) [2] or TWRI. Other advantages of SFS list as lower
transmission power, higher SNR value since the receiver is
exposed to less noise in the smaller bands at stepped discrete
frequencies [3], and finally use of existing efficient hardware
implementation. Despite these advantages, one shortcoming
is that they suffer from high data acquisition time since the
radar transmitter and receiver has to operate at only a-single-
frequency at-a-time. There have been some studies [4] where
multi-frequencies are transmitted concurrently. However, the
state-of-the-art approach is to transmit a subset of stepped
frequencies and reconstruct the signal using techniques from
Compressive Sensing theory [5]. In this study, we adopt this
approach and use measurements of random subsets of Fourier
coefficients to reconstruct the A-scan data.

There has been a recent interest in the literature in random
frequency radar imaging [5], [6], [9], [10]. These works

assume either a point-like sparse scene where the number
of targets is less than the number of grid points in a 2-
D uniformly discretized space and that the target’s body is
small or the whole vectorized 2-D radar image is sparse
in some domain, but the sparsity is not structured. In [5],
random frequency GPR measurements are considered that
compressively sense the A-scan of a sparse scene and the 1-
D A-scan vectors are then estimated using CS reconstruction
methods. In [6], the same methodology is applied for through-
the-wall imaging, but sparse estimation of A-scan vectors are
further improved by applying delay-and-sum beam-forming.
In [7], [8], CS is also applied in TWRI, but the authors also
assume point-like sparse scene. In a different vein, [9] assumes
that the scene is not necessarily sparse in the canonical base,
but sparse in a specific dictionary, e.g., GPR dictionary. A
SAR version of these works takes place in [10], where the
authors consider the sensed 2D scene image and reconstruct
the SAR image by vectorizing it and assuming sparsity in a
suitable 2-D sparsifying transform included canonical domain.

These schemes, however, are not convenient for scenarios
where the illuminated scene exhibits structural sparsity pattern:
a block-sparse model in x-position axis where each sparse
A-Scan vector shares the same support or at least these
successive scan vectors encounter smooth changes. While in
[5], [6], [9] each A-scan 1-D vector is reconstructed as a sparse
vector and then the B-Scan 2-D radar image is constructed by
concatenating them, we use a different approach and estimate
consecutive A-scan vectors in ensembles over sliding intervals.
We assume that in TWRI scenarios, depth data does not
contain step changes unless a new object starts being seen
by the A-scan. We can thus assume that each A-scan vector
to be sparse and that the locations of their non-zero amplitude
coefficients remain practically the same during the viewing
of an object. Our approach also enables to adaptively change
the measurement matrix while compressively sensing A-scan
signals in every successive position if we apply the recon-
struction algorithm in an on-line manner during sensing. This
is because we reconstruct the 2-D scene in sliding window
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mode and we can detect the energy increase in measurement
if a new object comes to picture. In addition to the random
frequency-based CS radar imaging, a time-domain CS radar
system is also possible [11], and our algorithm would still
be applicable provided the structural sparsity assumption is
satisfied. The time-domain scheme, however, requires more
complex hardware design and is out of the scope of this work.

We organize the rest of this paper as follows. Section II
provides the notation, the mathematical preliminaries and brief
review of CS theory. Section III provides a brief review of
stepped-frequency radar data acquisition method and explains
the compressive stepped frequency data sampling. In Section
IV, we propose our ADMM based radar image reconstruction
approach. Finally, experimental setup and reconstructed radar
images are given and the conclusion is drawn. In this work,
we set up a UWB SF-GPR scenario in the laboratory and use
Anritsu Network analyzer obtain real data through the wall.

II. PRELIMINARIES

To introduce our notation, we define, the `
p

norm of a

vector x 2 RN as kxk
p

=

⇣P
N

i=1 |xi

|p
⌘1/p

for p � 1. For
compressive sensing (CS) [12], we have m of measurements
y 2 Rm of a signal vector S 2 RN , i.e., y =  S where  is
the m⇥N measurement matrix. Assuming that this signal is
k-sparse in a sparsifying basis �, then the general compressive
sensing setup becomes y =  �x = Ax, where A =  �. The
compressively sampled sparse signal can be reconstructed by
solving the following `1 minimization problem;

min

x

kxk1 subject to Ax = y. (1)

For the measurement matrix � one may use randomly
selected m rows of an orthonormal basis, ⇥, which are indexed
with ⌦ 2 {1, 2, 3, ..., N}. With such a measurement matrix
�, then the k-sparse signal can be exactly reconstructed as
solution of (1) (see [13] for Mutual Coherence).

Finally, we define the proximal operator of a function f at
a point z 2 RN with a parameter � > 0 as

prox

�f

(z) = argmin

u

{f(u) + 1

2�
ku� zk22}. (2)

to be used in Eqs. (11) and (12).

III. COMPRESSIVE GPR SYSTEM

A. Stepped Frequency

Assume that the frequency of nth pulse is given as,

f
n

= f0 + n�f, n = 0, ..., N � 1 (3)

where �
f

is frequency interval. The reflected signal is defined
as [14]

r(n, t) ⇡ .s(
t� 2R/c

T
d

)e

⇣
�j

4⇡(f0+n�f)R
c

⌘

(4)

where  is a constant representing attenuation effect, c is the
speed of light, s(t) is the base modulated signal transmitted,
R is the range and T

d

is the pulse duration. Since the phase

Fig. 1: Representation of stepped frequency waveform (a)
transmitted signal (b) received signal after inverse Fourier
transform.

Fig. 2: Scan type of the GPR (a) A-scan (b) B-scan.

of the reflected signal is linearly related to n for a fixed R, we
expect a pulse-like response in the dispersion-free case [10].
The location of this return pulse in time domain gives the
depth information of the object as pictured in Figure 1.

For TWRI, we consider two scan types, the A-scan and the
B-scan. The A-scan data gives the range profile corresponding
to a single pulse of the radar. The radar signal sent by the
transmitting antenna is reflected from the targets and the return
signals are captured by the receiving antenna. The information
about the target is obtained by interpreting the amplitude and
phase value of the received signal.

Along the x-axis scan direction, the A-scan data is collected
in constant spatial displacements to generate a 2-D matrix.
This 2-D matrix allows us to create a 2-D image, called the
B-scan, of the scene. This B-scan pictures the x-z reflectivity
plane of the space behind the wall, where the range (z-axis)
indicates the distance from the target, and the position (x-axis)
defines the horizontal motion of the antenna. The method of
obtaining A-Scan and B-Scan is pictured in Figure 2. It is
possible to obtain a 3D image, called C-scan, including the
vertical position (y-axis).

B. Incoherent Measurements

A natural selection of measurement matrix for the stepped
frequency TWRI case consists in randomly choosing rows
from Fourier basis F⌦. This corresponds simply to measur-
ing randomly m frequency responses at some location l,i.e.,
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79. A-Scan 81. A-Scan 83. A-Scan

Wall 

Object 

Fig. 3: A-Scan signals are obtained by taking IFFT of N =

201 uniformly sampled frequencies between 0.1 GHz-15 GHz
at positions 79, 81 and 83.

y
l

= F⌦lxl

, x 2 RN , y 2 Rm. For B-scan, one slides
the TWRI device from position l to l + 1 to take the next
m measurements, y

l+1 = F⌦l+1xl+1 and so on along the x
trajectory. In this setup, each 1-D vector, x

l

representing the
depth information is considered to be sparse, hence amenable
to CS-based reconstruction from (1).

In the ideal case where x
l

is exactly k-sparse, we know that
it can be exactly reconstructed if we have m � O(k.logN)

[13]. But in reality, we obtain noisy time domain A-Scans
with spiky peaks in the range of object positions as illustrated
in Figure 3. These signals are therefore not exactly sparse,
but compressible in the sense that one may zero-out the small
coefficients to make the object visible and obtain sparse range-
profile.

IV. PROPOSED RECONSTRUCTION

Through-the-wall imaging is a well-established technique to
detect and identify objects behind opaque structures. A case in
point is an urgent rescue operation after an earthquake where
bodies and limbs need to be identified or a terrorist attack
where persons and possibly arms need to be detected behind
concrete walls.

In these cases, radar imaging of a human body cannot be
assumed as a point-like sparse signal. One then expects the
entries in the x-z matrix of the B-scan to possess a block-
sparse structure of some size D. In the B-scan matrix, l refer
to each scan position of the radar as a column. Thus if there
is a reflecting object behind the wall, then the B-scan non-
zero coefficients will start emerging at some position l and
continue the position l + D. Conversely, we do not expect
a change vis-a-vis the background until a new object comes
into picture at some location l for the duration of D A-scan
steps. The non-zero coefficients from position x

l

till the end
of the reflecting body will continue without much variation
both in (i) magnitude and (ii) indices of non-zero coefficients.
Condition (i) can be satisfied by adding a total variation term to
be minimized i.e.,

P
T+⌧�1
l=⌧

kx
l+1 � x

l

k1, where T is sliding
window length and ⌧ is the current position. Assumption (ii)
can be satisfied if we allow the supports of non-zero coeffi-

cients in successive A-scans by minimizing the number of non-
zero rows in the current window, i.e.,

P
N

i=1

���xi

⌧ :(⌧+T�1)

���
2
.

The necessity of this term enforcing row sparsity can be seen
in Figure 3 since the non-sparse supports of successive A-
Scans are expected to remain same during object. However,
this row sparsifying may cause an undesirable noise effect in
the solution of the system when T >> D. Because the non-
sparse support in the solution continue to remain same for
a while, i.e, between 1 to T new scan. Therefore, we may
wish to divide this T A-Scan solutions into group of adjacent
columns of length L with L  T . These groups can be formed
in non-overlapping manner, i.e, x

e
i,k

= xi

⌧+(k�1)L:(⌧+kL�1), or
over-lapping manner, i.e., x

e
i,k

= xi

⌧+(k�1):(⌧+L+k�1), where
x
e
i,k is the k.th group of i.th row. We can formulate a cost

function that satisfies these assumptions as follows:

x̂
⌧ :(⌧+T ) = arg min

x⌧:(⌧+T )

(

�1

2

T+⌧X

t=⌧

ky
l

� F
t

x
l

k22 +

�2

NX

i=1

X

k

��x
e
i,k

��
2
+ �3

T+⌧�1X

t=⌧

kx
t+1 � x

t

k1) (5)

where �1,�2,�3 are regularization parameters. The first term
is simply the data fidelity term, the second is the block
sparsity constraint and the third one constrains the reflection
coefficients from the object to remain the same. If we represent
the concatenation of desired signals from time ⌧ to T + ⌧ in
matrix form, i.e., x

⌧ :(⌧+T�1) = X 2 RN⇥T then we can
rewrite equation (5) as

ˆX = argmin

X

(

�1

2

TX

d=1

ky
d

� F
d

x
d

k22+�2 kXk2,1;L+�3 kXk
Tv,1)

(6)
where kXk2,1;L =

P
N

i=1

P
k

��x
e
i,k

��
2

parameter enforcing
row base group sparsity with window length L , X 2 RN⇥T

is current sliding window matrix and x
d

is d.th column of this
matrix with corresponding measurement matrix F

d

.
We will follow a ADMM based scheme to solve this

problem. A consensus form of (5) can be written as

⇣
ˆX, ˆZ1, ˆZ2

⌘
= argmin

X

(

�1

2

TX

d=1

ky
d

� F
d

x
d

k22+�2 kZ1k2,1;L

+ �3 kZ2k
Tv,1) subject to Z1 = X,Z2 = X. (7)

The augmented Lagrangian form of (7) can be cast as

L(�1,�2, X, Z1, Z2) = (

�1

2

TX

d=1

ky
d

� F
d

x
d

k22+�2 kZ1k2,1

+ �3 kZ2k
Tv,1 + h�1, (Z1 �X)i+ h�2, (Z2 �X)i+

µ1

2

kX � Z1k2
F

+

µ2

2

kX � Z2k2
F

), (8)

where the last two penalty terms with µ1, µ2 > 0 and
�1 2 RN⇥T ,�2 2 RN⇥T are dual variables. In ADMM,
primal and dual variables can be updated in alternating manner.
Dual variable updates can be easily done by applying gradient
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ascent steps [15] as given in Algorithm 1. Therefore, for the
sake of convenience we will derive just primal updates. The
updates of Z1 can be done via

Zk+1
1 = argmin

Z1

{�2 kZ1k2,1 + h�1, (Z1 �X)i

+

µ1

2

kX � Z1k2
F

} (9)

which is equivalent to

Zk+1
1 = argmin

Z1

(
�2 kZ1k2,1;L +

µ1

2

����Z1 �
✓
Xk+1 � �k

1

µ1

◆����
2

F

)
.

(10)
This is nothing but the proximal operator of windowed `2,1-

norm,

Zk+1
1 = prox

(
�2
µ1

)k.k2,1;L

✓
Xk+1 � �k

1

µ1

◆
. (11)

For non-overlapping groups, one can derive it as follows

(prox
�k.k2,1;L

(Z))

^

i,k

=

8
<

:

✓
1� �

kZ
e

i,kk

◆
Z
e
i,k if � <

��Z
e
i,k

��

0 else

by using [16] section 6.5.4, where M
f

i,k is the k.th group of
row i. For over-lapping case, it will be [17]

(prox
�k.k2,1

(Z))(j, k) =

8
<

:

✓
1� �

kZ
e

i,kk

◆
Z(j, k) if � <

��Z
e
i,k

��

0 else

where M(j, k) is the k-th element of j-th row. Similarly, the
update of Z2 will be proximal operator of `

TV,1 as follows

Zk+1
2 = prox

(
�3
µ2

)k.kTV,1

✓
Xk+1 � �k

2

µ2

◆
. (12)

On can also find the X update equation by solving
r

x

L(.) = 0, because the right hand side of the equation is
differentiable. The overall algorithm is given in Algorithm 1,
where we define M

d

as d-th column of a matrix M .

Algorithm 1 ADMM for Problem
repeat

Primal Updates

xk+1
d

 (�1F
T

d

F
d

+ Iµ1 + Iµ2)
�1

(�1F
T

d

y
d

+ µ1Z1d + µ2Z2d + �k

1d + �k

2d)

Zk+1
1  prox

(
�2
µ1

)k.k2,1;L

⇣
Xk+1 � �

k
1

µ1

⌘

Zk+1
2  prox

(
�3
µ2

)k.kTV,1

⇣
Xk+1 � �

k
2

µ2

⌘

Dual Updates:

�k+1
1  �k

1 + µ1(Z
k+1
1 �Xk+1

)

�k+1
2  �k

2 + µ2(Z
k+1
2 �Xk+1

)

until Convergence
return

ˆX

V. EXPERIMENTS
A. Experimental setup

In this study, the stepped frequency scanning was performed
using the Anritsu vector network analyzer and two horn
antennas in the spectral frequency band from 100 MHz to
15 GHz in 201 frequency steps. The receiver and transmitter
antenna pairs were shifted 150 times to combine the B-scan
data with 2 cm step length along a 3 m fixed x-axis. In
the designed scenario, we aimed to detect a target concealed
behind the wall. In accordance with this purpose, a metal body
model was placed behind a wall of approximately 30 cm to
perform the screening. The distance between the antenna pairs
and the metal target is 85 cm. Dimensions of the metal body
model detailed in the figure are in the rough 44x95 cm.

Fig. 8: Measurement scenario concerning with detection of the
target behind the wall.
B. Experimental Results

In Figure 4 (a), we shows the B-Scan obtained using from
IFFT of all N = 201 frequencies. A wall closed the reader and
an object in the middle easily identifiable. Figure 4 (b) shows
IFFT results of m = 0.2⇤N randomly chosen frequencies, we
can call it `2 minimization result. Figure 5 (a) shows the when
we randomly choose m = 0.2 ⇤ N random frequencies and
`1 minimization method where each A-Scan estimate is done
independently. As it is shown in Figure 5 (a) and Figure 6 (a),
in `1 results, object is not identifiable when m = 0.2 but when
we increase it to m = 0.4 it becomes more visible. Both Figure
5-6 (b) shows us then proposed approach when successive A-
Scan estimates support each other, object is visible even for
m = 0.2 ⇤N .

We also extend this experiment to the situation where we
exactly know the wall location, despite an improvement in the
result of `1 minimization method due to increase in sparsity
level we achieve much more improvement in the result of
the proposed method if we consider the location and shape
estimate of the object. We use over-lapping groups in that
experiment with L = 10. As shown in Figure 8, the object
length D = 22 (22) cm in our experimental setup which is
approximately estimated in all experiments.

VI. CONCLUSION
In this work, we define a random frequency through the

all imaging system. Then, we have proposed a new CS
reconstruction algorithm working on sliding window mode for
this system. This reconstruction method enjoys the information
that successive A-Scan signals have similar structures. The
algorithm can also be applied in an on-line manner during
the measurement process, therefore can help to adaptively
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Fig. 4: Estimated B-Scan images. There is a wall through all A-scan and object to be detected in the middle. (a) Non-CS B-scan.
IFFT is applied to get A-scan data to N = 201 uniformly sampled frequency in the signal band between 0.1 GHz-15GHz. (b)
B-scan estimation when IFFT applied to m = 0.2 ⇤N randomly chosen subset of these frequencies.

Fig. 5: (a) B-scan estimation when `1 minimization is applied to randomly chosen m = 0.2 ⇤ N frequencies. (b) B-scan
estimation of proposed Reconstruction.

Fig. 6: (a) B-scan estimation when `1 minimization is applied
to randomly chosen m = 0.4 ⇤ N frequencies. (b) B-scan
estimation of proposed Reconstruction.

Fig. 7: Estimated B-Scan images when the wall location is
known in advance. (a) B-scan estimation when `1 minimiza-
tion is applied to randomly chosen m = 0.2 ⇤N frequencies.
(b) B-scan estimation of proposed Reconstruction.

change the number of measurements taken in a fixed position.
This study can also be extended to the randomized position
choosing such as in SAR imaging or randomized B-Scan
choosing in C-Scan case.
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