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ABSTRACT
In this paper we study disparity estimation for high
density camera arrays using convolution neural networks
(CNN) with the goal of achieving an overall description
of all disparity images needed in the warping process
for light field compression. Furthermore, we present a
lossless compression scheme that makes use of the ob-
tained disparity estimates. The scheme provides random
access to individual views, as opposed to most pub-
lished lossless light field compression, which require the
simultaneous decoding of all views. Following similar
steps as in EPINET, which is a recently published CNN
based estimator of the disparity at the center view, we
design a CNN for estimating the disparity of the views in
corner positions. EPINET uses several data augmentation
techniques through rotation and flipping of light field and
we study similar transformations of the light field that
provide data augmentation when estimating corner views
disparities. The performance of the estimated disparities
is evaluated first in terms of the traditional mean square
error and percentage of pixels above a certain threshold.
Additionally, we validate the quality of the disparity esti-
mates in terms of their successful usage for the warping
stage in a lossless color view compression scheme. The
lossless compression achieved by the estimated disparities
is shown to be close to the lossless compression achieved
when using ground truth disparities. Codes are available
at https://github.com/marmus12/CornerView.

I. INTRODUCTION

Disparity estimation is an active area of research that
has several applications in computer vision. Disparity
maps contain the essential information about how the
consecutive views in a certain angular direction of the
camera array are related, making them very useful for light
field compression.

Recently, CNN based methods proved to be successful
in several light field processing tasks [1], [2]. EPINET
[3] is a CNN model for estimating a disparity map of a
light field image. The disparity map generated by EPINET
corresponds to the center view which is the disparity
between the center view and its closest right horizontal
neighbour view. In the following, we use the term corner
view disparity to refer to the disparity between the corner
view and its closest right horizontal neighbor, or equiva-
lently the negative disparities to the left neighbor. EPINET

has a multi-stream architecture which efficiently combines
the information coming from different view stacks. In
the network, several stacks of views are considered, ex-
tracting information from the epipolar plane images at
different angular directions in the camera array. The four
input view stacks are intersecting at the center view. For
estimating the center view disparity with EPINET, it is
needed that input views from around the center view are
available. Here, we present a different scheme, in which
the disparities can be estimated for the most extreme
locations in a camera array, namely for the corner views.
It should be noted that once the corner and center view
estimates are available, reliable estimates can be obtained
for any desired view, since reliable information exists for
displacements on various angular directions.

II. CORNER VIEW DISPARITY ESTIMATION

The proposed CNN architecture for estimating a corner
view disparity map is depicted on Fig. 1. We call this
architecture CEPINET, short for Corner EPINET. This
architecture is derived from the original EPINET architec-
ture by replacing the 45◦ and 135◦ diagonal subnetworks
with a single diagonal subnetwork, since in CEPINET
there is a single diagonal stack. Moreover, the number of
filters in the merge network is reduced to 210 from 280 to
remain consistent with the number of input stacks. The
CEPINET network encompasses 2.96 million trainable
parameters, while the number for EPINET is 5.12 millions.

In EPINET, data augmentation of the light field through
rotation is performed by rotating the light field image
around the center view. Therefore, the center view remains
at the center after rotation. Hence, the resulting light field
is still a valid input for the network that estimates the
center disparity. In CEPINET, the situation is different in
the sense that whenever the light field is rotated about
the center of view array, the position of every corner
changes. In order to train a single network, which by
proper preprocessing can estimate any of the four corners,
we introduce rules for forming the input stacks, with
the convention that the disparity in the upper left corner
has to be estimated. According to this convention, when
estimating the other three corners, the input light field is
rotated by multiples of 90 degrees to bring the corner
view that is being estimated to the upper left position.
On the other hand, we also apply transposition of the
light field as an augmentation which also yields a valid
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light field. Upper left corner view remains in the same
place after transposing the light field, thus not violating our
convention. In summary, eight different training samples
are obtained by rotating and transposing a light field
image: two for each corner (original and transpose). The
other augmentation strategies such as color scaling are kept
the same as in EPINET.
III. LOSSLESS COMPRESSION USING CORNER

AND CENTER VIEW DISPARITIES

Once the disparity maps for the corner views and the
center view are obtained, any target view can be recon-
structed with small error by warping reference images and
combining the warped images. The proposed lossless light
field compressor, dubbed here LLFC, is depicted in Fig.
2. The scheme is close in spirit to the disparity based and
region based plenoptic image compression from [4], but
has a more refined combining of warping from several
references, based on a region based best performance
switch, as described next. Unlike the previous work in [4],
LLFC makes use of the corner view disparity estimations
in addition to the center view for predicting one general
position view.

For each target view, a disparity image is generated
by warping the closest reference’s disparity to the target
location. The target disparity is quantized and divided
into connected regions. For each region, one marks in an
image, called best reference labels image, the index of
that warped image which yields the smallest MSE over
the region. The best reference labels image is constructed
for each target and it is used in conjunction with the
warped references to predict the target view. Best reference
labels image has all elements as integers 1 to 5 (indexing
the winner, out of 4 corners and center). First the side
information is encoded: 5 reference disparity maps, 5
reference color images, and 1 best reference labels image
for each target. Furthermore, since we want to perform
lossless compression, residual images for each target are
also transmitted. Best reference labels images are very
sparse allowing them to be compressed efficiently. We
compress reference color, disparity images and residual
images with lossless JPEG 2000 [5] prior to transmission.
The best reference labels image can be encoded either with
JPEG 2000 or CERV [6]. We present results for both cases.

IV. EXPERIMENTAL WORK

In this section, we present experimental results for
corner view disparity estimation and lossless compression.
Our training and validation set consists of 13 samples
from the HCI Benchmark [7]. Three samples that contain
reflective surfaces (vinyl, kitchen and museum) are chosen
as test samples. Since reflective surface disparities are hard
to estimate, MSEs for these samples are much higher than
the validation samples in Tables I-II.

We train 2 CEPINET and 2 corresponding baseline
EPINET models, each time leaving out 1 sample (first
greek, then town) for validation so that the training set
consists of 12 samples. From each light field image, 8
different training samples are obtained by rotating the

Table I. MSE*103 with Town as Validation
View Train Mean Vinyl Kitchen Museum Town

NW 7.17 97.13 141.73 65.34 3.67
NE 7.55 79.11 138.28 60.66 2.95
SW 7.69 124.50 157.88 83.01 6.03
SE 9.21 156.59 153.87 107.58 5.14
Center 15.13 112.09 164.57 116.68 3.30

Table II. MSE*103 with Greek as Validation
View Train Mean Vinyl Kitchen Museum Greek

NW 22.74 114.53 148.17 66.88 95.12
NE 20.65 90.33 138.69 82.28 206.86
SW 21.43 115.13 175.99 52.73 250.77
SE 23.79 126.98 152.06 65.29 272.86
Center 12.00 117.70 154.84 76.05 118.61

light field with multiples of 90 degrees and taking the
transpose. These 8 different cases are randomly sampled
during training. One training batch consists of 48 randomly
chosen multi-scale patches with size 25x25. Learning rate
is initially set as 10−4 and it is dropped by a factor of 0.5
whenever training loss reaches a plateau. We present MSE
and Bad Pixel Ratio results for 5 different views, 4 being
corners and 1 being center on Tables I-IV. Qualitative
results obtained with 2 EPINET and 2 CEPINET models
with the corresponding validation samples are presented
on Figure 3.

We report the compressed size, as total compressed file
size over the total number of pixels (9× 9× 512× 512)
of the light field, expressed in bits per pixel (bpp), for
16 test samples out of the training set averaged over all
target views with LLFC and JPEG2000 are presented on
Tables V-VI. According to Tables V-VI LLFC compres-
sion method yields superior results to JPEG2000 for all
samples. Using CERV [6] for compressing best reference
labels, instead of JPEG2000, yields slightly better results
as evident on Tables V-VI. CERV provides a specialized
framework for encoding constant value regions in an
image, therefore it is expected to yield better results
when compared to JPEG 2000 which is a generic image
compression scheme. On the other hand, JPEG 2000 has
the advantage of providing a less complicated encoder
and decoder architecture while not sacrificing a lot from
accuracy.

The compressed size obtained with ground truth (GT)
corner and center disparities are also presented as an ideal
reference on Table V. GT disparity results provide an

Table III. Bad Pixel Ratio with Town as Validation (Threshold =0.07)
View Train Mean Vinyl Kitchen Museum Town

NW 0.037 0.229 0.251 0.113 0.049
NE 0.037 0.237 0.238 0.107 0.043
SW 0.043 0.254 0.246 0.130 0.047
SE 0.043 0.230 0.244 0.132 0.052
Center 0.043 0.260 0.259 0.132 0.047

Table IV. Bad Pixel Ratio with Greek as Validation (Threshold = 0.07)
View Train Mean Vinyl Kitchen Museum Greek

NW 0.108 0.272 0.279 0.133 0.309
NE 0.108 0.267 0.278 0.125 0.295
SW 0.103 0.294 0.275 0.139 0.313
SE 0.109 0.273 0.271 0.143 0.337
Center 0.075 0.245 0.253 0.132 0.279



Figure 1. CEPINET: the angular directions for estimating the disparity map of the upper left corner view (green square) are depicted as black arrows.

Figure 2. Proposed encoder architecture for lossless compression.

Table V. The compressed size for samples with GT disparity available
Sample JP2K LLFC(JP2K/CERV) LLFC(GT Ds)
vinyl 7.38 4.41/4.30 4.08
kitchen 9.07 6.27/6.15 5.78
museum 10.97 7.01/6.92 6.67
greek 8.15 5.22/5.10 4.94

Table VI. The compressed size for samples without GT disparity
Sample JP2K LLFC(JP2K) LLFC(CERV)
dino 9.65 5.84 5.79
dots 24.16 20.43 20.06
bedroom 10.13 6.94 6.90
pyramids 19.88 13.40 13.32
stripes 3.44 2.01 1.92
bicycle 12.85 8.80 8.65
b.gammon 16.62 11.40 11.30
origami 10.53 6.97 6.83
boxes 11.34 8.12 7.95
cotton 6.96 3.26 3.21
sideboard 13.93 9.56 9.42
herbs 11.93 8.15 8.01

upper limit for the performance of our framework that can
be attained by improving the disparity estimation stage.
Best reference labels are encoded using CERV.

The compressed size results of our lossless compression

Table VII. The compressed size at different Views (LLFC(CERV))
Ref 7.81 7.96 8.01 8.10 7.95 7.91 7.80 Ref
7.92 8.70 8.77 8.82 8.23 8.83 8.76 8.70 7.93
8.02 8.73 8.80 8.77 8.14 8.76 8.83 8.75 8.02
8.04 8.75 8.73 8.69 7.94 8.68 8.75 8.79 8.06
7.95 7.89 7.86 7.72 Ref 7.73 7.89 7.94 8.00
8.21 8.72 8.69 8.66 7.88 8.64 8.72 8.75 8.19
8.12 8.81 8.71 8.67 7.97 8.67 8.73 8.81 8.13
7.96 8.73 8.80 8.71 7.99 8.68 8.77 8.73 7.97
Ref 7.79 7.94 7.98 7.92 7.93 7.89 7.77 Ref

scheme at every target view averaged over 16 samples
(listed on Tables V-VI) are presented on Table VII. These
values are computed by averaging the common costs due
to transmission of reference color and disparities over
all targets and adding each target’s own cost for best
reference labels and residuals. It should be noted that
this computation corresponds to the scenario when whole
light field image is being transmitted. Lossless JPEG2000
yields an average bpp of 11.7 for the same data for all
views. Hence, corner view based compression scheme
yields better results when compared to JPEG2000 at all
camera array locations as evident from Table VII.



Figure 3. Columns from left to right: Ground Truth, Estimation, Absolute Error, Bad Pixel Mask (0.07). Rows from top to bottom: Center, NW Corner,
Center, NW Corner.

V. CONCLUSION

In this work, we constructed the CEPINET for estimat-
ing corner view disparity maps of a light field image. It is
observed that this variant is able to generate corner view
disparities at a similar precision or even better than the
center view estimates by EPINET. The proposed lossless
compression method provides random access to individual
targets, at the cost of transmitting first only the references,
and its compression ratio is expected to be lower than the
methods that don’t possess the random access feature. On
the other hand, the compression ratio of LLFC is better
than the independent encoding of views by JPEG 2000,
which provides instantaneous random access.
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