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ABSTRACT 

 
Recently, multi-camera systems have become very popular to 
capture VR content. Capturing such content is complex and 
different types of errors are likely to appear. Unfortunately, the 
data processing happens off-line and reviewing the possibly 
erroneous result takes place a long time after the capture. In many 
cases, the scene needs to be captured once again.    
In order to speed-up this trial-and-error procedure, real-time or 
near-real time processing pipelines can help. In this case study, we 
devise a light field processing chain for near-real time depth 
reconstruction and rendering. A single computer system with 
recent hardware processes a dataset with more than 20fps. The 
subsequent view synthesis runs at up to 90fps, supports head 
mounted displays and is integrated inside Unreal Engine. Our 
results show that the visual quality is close to other, state-of-the art 
depth reconstruction and rendering pipelines that require longer 
processing times.   

 
Index Terms— Light field reconstruction, DIBR, real-time 

view synthesis 
 

1. INTRODUCTION 
 
In June 2018, Overbeck et al. [3] showed the amazing features that 
light field imaging can provide in virtual reality (VR) 
environments. The authors put a set of cameras on a rotating 
platform. Their demo allows a user to explore a static, pre-captured 
scene with full six degrees of freedom (6-Dof) on a head mounted 
display (HMD). The movement of the user is restricted to a small 
sphere (about 0.5m diameter). Besides technological challenges the 
large amount of carefully captured scenes (e.g. inside a space 
shuttle) makes their demo especially valuable.   
Capturing an interesting scene is even more challenging if dynamic 
applications are considered. Often, capturing dynamic, live-action 
light field scenes is an erroneous procedure. From a technical 
perspective, scene, cameras and actors need to be setup such that 
the visual parallax is maximized while the depth reconstruction 
still yields satisfying results. 
The ability to review a captured scene on set with no or only very 
short delay is a key element for such light field based VR 
applications. Here, reviewing a scene means that a user likes to see 
the captured light field dataset with the original framerate inside a 
real-time rendering environment possibly with a HMD as 
presented in [4]. 
Against this background, we study the problem of high-
performance light field processing and rendering for light field 

video. The considered system comprises a single computer with a 
recent GPU. After image acquisition, we reconstruct per-view and 
per frame depth using Dąbała’s method [5]. The system holds the 
images and depth maps in memory such that the following 
rendering algorithm can directly access them. In our experiment, 
we compare off-line and on-line depth reconstruction methods and 
evaluate the quality loss.  
 

2. PREVIOUS WORK 
 
Since the original publication by Hanrahan [6] in 1996, light-field 
imaging has gained more and more interest with many 
contributions each year that address different types of hardware 
setups and image processing methods. Many publications employ 
wide-baseline multi-camera systems [1, 2, 4, 5, 7, 8] in 
combination with depth-reconstruction or 3D reconstruction and 
matching rendering techniques. Typically, the proposed software 
pipelines reconstruct depth- or disparity maps in an offline process. 
An up-following view synthesis step may be on-line or off-line. 
Though many authors also address computational efficiency, no 
method or system addresses on set light-field reconstruction and 
play-back with limited hardware.   
For the remaining part of this article, we focus on systems that 
comprise a set of individual cameras and thus are in principle 
capable of capturing dynamic scenes. In this section, we review 
related works and put the properties of our system in contrast.  
The method developed by Ziegler et al. [4] in 2017 synthesizes 
novel views in real-time using DIBR and addresses VR 
applications. The underlying depth-maps are obtained in a user-
steered offline process. 
In 2018, Chuchvara et al. [9] presented their work on fast and 
accurate light field reconstruction based on superpixel 
segmentation. The authors report timing results ranging between 
204ms and 1584ms per view on a NVIDIA Quadro M1000M GPU 
for the depth reconstruction. Timing results for the off-line view 
synthesis were not provided   
Similarly,  Dąbała et al. [5] presented and evaluated a very 
efficient multi-scale approach for depth reconstruction. The 
authors report between 147ms and 277ms for a complete light field 
dataset with 0.5MPixel per view. As before, NVS is not in focus 
and timing results are not given. 
The method developed by Yao et al. [10] addresses real-time NVS 
but uses a special light-field representation format that is obtained 
in an off-line process. Furthermore, the rendering method does not 
support view reconstruction perpendicular to the camera plane. In 
our experiments, we learned that this is an important feature in the 
context of VR applications. DIBR naturally provides such 
functionality.  
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Figure 1: Our DIBR algorithm uses a screen element to 
integrate light fields into a virtual environment based on the 
observer position CV, the screen position and the 
reconstructed per pixel disparity. 
 

 

Similar to light field reconstruction, the works developed by Dou 
et al. [11], Collet et al. [7], De Aguilar et al [12] and Keller et al. 
[13] aim to reconstruct a 3D model for a subsequent rendering. 
Explicit 3D reconstruction or surface reconstruction can be 
beneficial in terms of rendering performance as modern GPU’s 
perform this task with highest efficiency. Especially the works by 
Dou and Keller also target real-time applications. However, the 
systems comprise many computers or incorporate active depth 
sensing. In contrast to DIBR, surface reconstruction adds an 
additional processing step. This reduced computational efficiency 
compared to pure DIBR. 
In 2017, Penner [14] presented a novel view synthesis algorithm 
based on a technique called “Soft 3D reconstruction”. They point 
out that for a good view-synthesis result the quality of underlying 
stereo-matching methods is of minor importance. However, the 
computational performance of the underlying depth reconstruction 
step remains unclear. 
Gaming engines such as Unreal Engine (UE) or Unity render a 
mesh or a point-cloud with very high performance since a GPU 
typically performs the required operations. The overall number of 
vertices and faces to be projected is the major factor that influences 
rendering performance. 

 
3. PROPOSED METHOD 

 
3.1. Online depth reconstruction 
 
Our online depth reconstruction is based on former work published 
by Dąbała et al. [5]. We re-implemented their algorithm with 
CUDA and optimized the software for efficient sequence 
processing. Up following, we give a brief overview on the original 
method.  
Dąbała’s method works in a coarse to fine manner and processes a 
pre-rectified MxN light field frame in one run. Initially, the 
algorithm builds up a multi-scale image pyramid for all input 
images with a resolution factor 2 between each level. For each 
image and each level, the software also builds up Census 
descriptors for the following matching step. Starting with the 
lowest resolution level, the algorithm matches each image with up 
to 4 directly adjacent images. Per pixel and per stereo pair, a low 
number of depth candidates (i.e. 5) is evaluated. This is a key 
element of Dabala’s method. In addition to the matching costs, the 
method computes a confidence value that estimates the reliability 
of a depth candidate. Subsequently, a merging, consolidation and 
filtering step combines and refines the individual stereo pairs 
yielding one depth map for each input image. The next level uses 
this depth map as a guide and refines the input disparity map. The 
algorithm ends when the original resolution has been reached.   
 
3.2. VR view synthesis model 
 
As outlined, we aim to review a dynamic light field dataset in a VR 
environment. Therefore, our system relies on DIBR to generate a 
novel view from RGBD input data. However, depth maps only 
provide an implicit 3D model. Especially in a VR environment, it 
is extremely important that the light field data and the surrounding 
CG environment behave consistently. The parallax of the light 

field and the CG environment need to match. In order to solve this 
issue, our rendering model uses an intermediate screen to transfer 
the light field into the virtual environment.  
Figure 1 represents the top view of a level inside a gaming 
framework such as UE. The player, depicted by the camera Cv can 
move freely through the scene. The intermediate screen behaves 
like a window that separates CG domain and light field domain. 
In case of classical 3D projection, a point M belonging to the actor 
can be projected into the views of the spectator and rays intersect 
with the screen at distinct points. Equivalently, corresponding 
points that individually emerge as rays from these intersection 
points appear as being situated behind the screen. Our proposed 
method therefore directly computes two individual images for the 
left and right view associated with the position of the observer CV. 
The rendering engine then maps those images onto the screen and 
then further in the spectator’s view. 
We implemented this rendering method as plug-in for UE version 
4.20. The core shader programs are written in High Level Shading 
Language (HLSL). Within the rendering process of each frame, our 
plug-in computes individual images for the left and right eye. The 
rendering of an image itself consists of forward warping, filtering, 
backward- warping, view blending and inpainting.  
The implementation uses a dual-buffer system for dynamic light-
field import and rendering. A first buffer is located in host memory 
and a second buffer is located in GPU memory. At the current 
stage, the system works with uncompressed image data. In terms of 
performance, we can render light-fields with about 15MP in total. 
Then, rendering one view is below 5ms yielding more than 90 
frames in VR as required for HMD systems.   
 
 

4. EXPERIMENTAL SETUP 
In our experimental setup, we evaluate the performance of our 
selected method in terms of quality and performance, both for 
static scenes as well as for dynamic scenes. Given a sparsely 
sampled input light field, we firstly reconstruct the per view depth 
as described. Afterwards, we render intermediate view positions 
using our real-time DIBR plug-in for UE.    

 



 
4.1. Quantitative evaluation on static scenes 
 
Here, we follow the evaluation procedure as performed by 
Chuchvara et al. [9]. The authors evaluate their method on scenes 
taken from the Stanford Lightfield Archive [1]. As input, we also 
use a regular 3x3 subset and reconstruct every second image in the 
middle row. Table 1 shows the obtained SSIM scores in 
comparison with previous work from Dąbała et al. and Chuchvara 
et al. On average, our results are slightly lower than the results 
reported by Chuchvara. Given the very limited amount of time (see 
section 4.4), this low degradation might be acceptable for a 
preview or play-back with low delay. In addition, Table 2 lists 
PSNR results for Yao’s method and our method. Here, we compare 
Yao’s results with a 3x3 and a 5x5 subset of the original 17x17 
input data. Our results show that we achieve slightly higher quality 
as Yao given only on a 3x3 subset. On a 5x5 subset, our method is 
clearly better.  
In addition to this numerical results, Figure 2 shows rendering 
details for four selected datasets. For the first three datasets, a 3x3 
subset has been used as input data. 
 
4.2. Quantitative evaluation on dynamic scenes 
 
In this case, we compare quantitative image quality on video 
datasets as provided by  Dąbała et al. [5] and also by Sabater et al. 
[2]. Instead of skipping views during depth reconstruction and 
view synthesis, we compute depth maps for all input views. For 
evaluation, we discard depth for a specific view and reconstruct 
this view from surrounding camera positions. In our opinion, this 
comes close to practical applications but allows for fair evaluation. 
For the following evaluation, we discarded and reconstructed the 
second camera in the first row on the dataset Painter.   
Figure 3 shows the results for frames 0 to 60. The curves compare 
results of DERS [15] and our tested combination of depth 
reconstruction and view synthesis on full resolution images. Here, 
this combination loses about 0.03 points on average compared to 
DERS. In addition to full resolution reconstruction, we evaluate 
also on half resolution using downscaled input images. For 
evaluation, we upscale the result and compare to the full resolution 
reference image.  In order to quantify this result, Figure 3 shows 
two additional curves. These curves evaluate the resolution loss as 
introduced by a low pass filter by a factor of 3 and 4, respectively. 
Our results range between these curves. This indicates that the 

analyzed light field processing loses more than a factor 3, but less 
than a factor 4 in terms of true resolution.     
In our opinion, when reviewed on a recent HMD with relative low 
angular resolution, the quality and resolution of our tested method 
satisfies the requirements in these environments. According to our 
experience, a proper integration of the rendered content is more 
important than having the highest possible resolution.  
 
4.3. Depth reconstruction performance 
 
At the current stage, our system reads pre-captured input data, 
streams the data into GPU memory and reconstructs depth for all 
views. Up following, the software transfers the data back and 
stores the data. Memory transfers are executed asynchronously so 
that they do not block computational GPU resources.  
Table 3 gives timing details for the 4x4 dataset Painter from a 
system perspective and Table 4 lists the timing results for the 
individual processing steps on the GPU. The processing of this 
dataset including image reading from a RAM drive and image  
writing on a RAM drive takes 13.8 seconds, corresponding to 23 
fps or 43.5ms per frame. This is a bit faster than the sum of all 
elements in Table 3 (46.7ms) and is explainable by the parallel 

Table 1: SSIM scores on 3 static datasets. The comparison is 
performed on a 3x3 subset per scene.  

SSIM  
score 

Dąbała  
et al. 

Chuchvara et 
al. 

Ours 

Truck 0.95 0.975 0.971 
Bracelet 0.98 0.974 0.956 
Jelly Beans n.a. 0.982 0.972 

 

 
Table 2: PSNR scores for 3 static datasets. The scores show 
average PSNR results computed from all views that are not 
contained in the input light field.   

PSNR  
score [db] 

Yao 
et al. 

Ours 
(5x5 subset) 

Ours 
(3x3 subset) 

Amethyst 31 37.46 34.50 
Truck n.a. 38.63 36.75 
Chess 32.9 36.15 33.70 
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Figure 3: SSIM scores for the dataset Painter for frames 0 to 
60.  
 

 
Figure 2: Rendering results on Truck, Chess, Amethyst [1]  and 
Painter [2]. The first and second rows show the reference image 
and the reconstructed image. The third row highlights the 
differences. The last row shows a nearby input disparity map.   



execution in our implementation. Overall, the performance comes 
close to the requirements for real-time applications that start with 
about 25 fps. With the latest generation of graphics cards or several 
graphics cards, the performance could be increased even further. 
The method proposed by Chuchvara requires 5.3s for a 3x3 light 
field (588ms per view) on a GPU with 1017 GFLOPS (NVIDIA 
QUADRO M1000M). The NVIDIA 1080Ti used in our 
experiments provides 11340 GFLOPS.  
If Chuchvara’s method scales linearly with the GPU’s capabilities, 
the method would still require about 474ms for a complete light 
field.  Hence, our method is computationally more efficient 
(36.97ms for a complete light field on a comparable dataset).  
 

5. CONCLUSION 
 
In this work, we analyzed near real-time depth reconstruction and 
real-time view synthesis. Our aim was to enable on set light-field 
play-back in VR with parallax. Our results show that we achieve 
near real-time performance for the depth reconstruction and real-
time view synthesis on a single PC with a single GPU. The system 
processes a 4x4 light field video with 317 frames in 13.8 seconds. 
When reviewed on an HMD or on a display, the result shows only 
very little visual artifacts. The multi-scale approach of the 
underlying depth-reconstruction is advantageous since its low-pass 
characteristic hides possible view-synthesis artifacts.  
In future, we’d like to integrate the temporal domain in our 
algorithm. Here, further improvements in terms of performance 
and quality can be expected. If possible, we would like to integrate 
image acquisition, depth processing and rendering in a single 
software. The results as presented indicate that such a software 
could be beneficial.   
The Fraunhofer and the Max Planck cooperation program within 
the framework of the German pact for research and innovation 
(PFI) supported this work. 
 

6. REFERENCES 
 

[1] A. Adams, “The (New) Stanford Light Field Archive,” 2008. 
[2] N. Sabater, G. Boisson, B. Vandame, P. Kerbiriou, F. Babon, 
M. Hog, R. Gendrot, T. Langlois, O. Bureller, and A. Schubert, 
“Dataset and Pipeline for Multi-view Light-Field Video,” in 
Computer Vision and Pattern Recognition Workshops (CVPRW), 
2017 IEEE Conference on, 2017, pp. 1743-1753. 

 [3] R. S. Overbeck, D. Erickson, D. Evangelakos, and P. Debevec, 
“Welcome to light fields,” in ACM SIGGRAPH 2018 Virtual, 
Augmented, and Mixed Reality, Vancouver,  British Columbia, 
Canada, 2018, pp. 32. 
[4] M. Ziegler, J. Keinert, N. Holzer, T. Wolf, T. Jaschke, R. op het 
Veld, F. S. Zakeri, and S. Foessel, “Immersive virtual reality for 
live-action video using camera arrays,” in IBC Conference, 
Amsterdam, Netherlands, 2017, pp. 1-8. 
[5] Ł. Dąbała, M. Ziegler, P. Didyk, F. Zilly, J. Keinert, K. 
Myszkowski, H. P. Seidel, P. Rokita, and T. Ritschel, “Efficient 
Multi‐image Correspondences for On‐line Light Field Video 
Processing,” in Computer Graphics Forum, 2016, pp. 401-410. 
[6] M. Levoy, and P. Hanrahan, "Light field rendering." pp. 31-42. 
[7] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. 
Calabrese, H. Hoppe, A. Kirk, and S. Sullivan, “High-quality 
streamable free-viewpoint video,” ACM Transactions on Graphics 
(TOG), vol. 34, no. 4, pp. 69, 2015. 
[8] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. 
Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance 
imaging using large camera arrays,” ACM Transactions on 
Graphics (TOG), vol. 24, no. 3, pp. 765-776, 2005. 
[9] A. Chuchvara, A. Barsi, and A. Gotchev, “Fast and Accurate 
Depth Estimation from Sparse Light Fields,” arXiv preprint 
arXiv:1812.06856, 2018. 
[10] L. Yao, Y. Liu, and W. Xu, “Real-time virtual view synthesis 
using light field,” EURASIP Journal on Image and Video 
Processing, vol. 2016, no. 1, pp. 25, 2016. 
[11] M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. R. Fanello, 
A. Kowdle, S. O. Escolano, C. Rhemann, D. Kim, and J. Taylor, 
“Fusion4d: Real-time performance capture of challenging scenes,” 
ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp. 114, 
2016. 
[12] E. De Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel, 
and S. Thrun, “Performance capture from sparse multi-view 
video,” ACM Transactions on Graphics (TOG), vol. 27, no. 3, pp. 
98, 2008. 
[13] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and 
A. Kolb, “Real-time 3d reconstruction in dynamic scenes using 
point-based fusion,” in 3D Vision-3DV 2013, 2013 International 
Conference on, 2013, pp. 1-8. 
[14] L. Z. Eric Penner, “Soft 3d reconstruction for view synthesis,” 
ACM Transactions on Graphics (Proc. SIGGRAPH Asia), vol. 36, 
2017. 
[15] K. Wegner, and O. Stankiewicz, “DERS Software Manual,” 
Sapporo, 2014. 
 

Table 3: Timing results from system perspective in ms. 
 

Image reading 5.65  
CPU to GPU memory transfer 3.91  
Depth reconstruction 18.11  
GPU to CPU memory transfer 2.83  
Image saving 16.31  

 
 

Table 4: Depth reconstruction timing results for two light-field 
datasets and specific processing steps in ms.   

Light field views 
Image resolution 

3x3   
1920 x 1080 

4x4 
960 x 540 

Creating Mip-Map  3.99 1.80 
Matching 7.05 2.90 
Consolidation  3.91 2.32 
Smoothening 17.65 8.33 
Up sampling 4.37 2.07 
Total 36.97 17.42 
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