
NEAR REAL-TIME LIGHT FIELD RECONSTRUCTION AND RENDERING
FOR ON-LINE LIGHT FIELD EVALUATION

Matthias Ziegler1, Mojtaba Bemana2, Joachim Keinert1, Karol Myszkowski2

1 Fraunhofer Institute for Integrated Circuits

Moving Picture Technologies
91058 Erlangen, Germany

2 Max Planck Institute for Informatics
Computer Graphics

66123 Saarbrücken, Germany

ABSTRACT

Recently, multi-camera systems have become very popular to
capture VR content. Capturing such content is complex and
different types of errors are likely to appear. Unfortunately, the
data processing happens off-line and reviewing the possibly
erroneous result takes place a long time after the capture. In many
cases, the scene needs to be captured once again.
In order to speed-up this trial-and-error procedure, real-time or
near-real time processing pipelines can help. In this case study, we
devise a light field processing chain for near-real time depth
reconstruction and rendering. A single computer system with
recent hardware processes a dataset with more than 20fps. The
subsequent view synthesis runs at up to 90fps, supports head
mounted displays and is integrated inside Unreal Engine. Our
results show that the visual quality is close to other, state-of-the art
depth reconstruction and rendering pipelines that require longer
processing times.

Index Terms— Light field reconstruction, DIBR, real-time

view synthesis

1. INTRODUCTION

In June 2018, Overbeck et al. [3] showed the amazing features that
light field imaging can provide in virtual reality (VR)
environments. The authors put a set of cameras on a rotating
platform. Their demo allows a user to explore a static, pre-captured
scene with full six degrees of freedom (6-Dof) on a head mounted
display (HMD). The movement of the user is restricted to a small
sphere (about 0.5m diameter). Besides technological challenges the
large amount of carefully captured scenes (e.g. inside a space
shuttle) makes their demo especially valuable.
Capturing an interesting scene is even more challenging if dynamic
applications are considered. Often, capturing dynamic, live-action
light field scenes is an erroneous procedure. From a technical
perspective, scene, cameras and actors need to be setup such that
the visual parallax is maximized while the depth reconstruction
still yields satisfying results.
The ability to review a captured scene on set with no or only very
short delay is a key element for such light field based VR
applications. Here, reviewing a scene means that a user likes to see
the captured light field dataset with the original framerate inside a
real-time rendering environment possibly with a HMD as
presented in [4].
Against this background, we study the problem of high-
performance light field processing and rendering for light field

video. The considered system comprises a single computer with a
recent GPU. After image acquisition, we reconstruct per-view and
per frame depth using Dąbała’s method [5]. The system holds the
images and depth maps in memory such that the following
rendering algorithm can directly access them. In our experiment,
we compare off-line and on-line depth reconstruction methods and
evaluate the quality loss.

2. PREVIOUS WORK

Since the original publication by Hanrahan [6] in 1996, light-field
imaging has gained more and more interest with many
contributions each year that address different types of hardware
setups and image processing methods. Many publications employ
wide-baseline multi-camera systems [1, 2, 4, 5, 7, 8] in
combination with depth-reconstruction or 3D reconstruction and
matching rendering techniques. Typically, the proposed software
pipelines reconstruct depth- or disparity maps in an offline process.
An up-following view synthesis step may be on-line or off-line.
Though many authors also address computational efficiency, no
method or system addresses on set light-field reconstruction and
play-back with limited hardware.
For the remaining part of this article, we focus on systems that
comprise a set of individual cameras and thus are in principle
capable of capturing dynamic scenes. In this section, we review
related works and put the properties of our system in contrast.
The method developed by Ziegler et al. [4] in 2017 synthesizes
novel views in real-time using DIBR and addresses VR
applications. The underlying depth-maps are obtained in a user-
steered offline process.
In 2018, Chuchvara et al. [9] presented their work on fast and
accurate light field reconstruction based on superpixel
segmentation. The authors report timing results ranging between
204ms and 1584ms per view on a NVIDIA Quadro M1000M GPU
for the depth reconstruction. Timing results for the off-line view
synthesis were not provided
Similarly, Dąbała et al. [5] presented and evaluated a very
efficient multi-scale approach for depth reconstruction. The
authors report between 147ms and 277ms for a complete light field
dataset with 0.5MPixel per view. As before, NVS is not in focus
and timing results are not given.
The method developed by Yao et al. [10] addresses real-time NVS
but uses a special light-field representation format that is obtained
in an off-line process. Furthermore, the rendering method does not
support view reconstruction perpendicular to the camera plane. In
our experiments, we learned that this is an important feature in the
context of VR applications. DIBR naturally provides such
functionality.

Light field

CGI

x

zM

screen

f v=
-C

v,
z

ppx=-Cv,xCv

ws

Figure 1: Our DIBR algorithm uses a screen element to
integrate light fields into a virtual environment based on the
observer position CV, the screen position and the
reconstructed per pixel disparity.

Similar to light field reconstruction, the works developed by Dou
et al. [11], Collet et al. [7], De Aguilar et al [12] and Keller et al.
[13] aim to reconstruct a 3D model for a subsequent rendering.
Explicit 3D reconstruction or surface reconstruction can be
beneficial in terms of rendering performance as modern GPU’s
perform this task with highest efficiency. Especially the works by
Dou and Keller also target real-time applications. However, the
systems comprise many computers or incorporate active depth
sensing. In contrast to DIBR, surface reconstruction adds an
additional processing step. This reduced computational efficiency
compared to pure DIBR.
In 2017, Penner [14] presented a novel view synthesis algorithm
based on a technique called “Soft 3D reconstruction”. They point
out that for a good view-synthesis result the quality of underlying
stereo-matching methods is of minor importance. However, the
computational performance of the underlying depth reconstruction
step remains unclear.
Gaming engines such as Unreal Engine (UE) or Unity render a
mesh or a point-cloud with very high performance since a GPU
typically performs the required operations. The overall number of
vertices and faces to be projected is the major factor that influences
rendering performance.

3. PROPOSED METHOD

3.1. Online depth reconstruction

Our online depth reconstruction is based on former work published
by Dąbała et al. [5]. We re-implemented their algorithm with
CUDA and optimized the software for efficient sequence
processing. Up following, we give a brief overview on the original
method.
Dąbała’s method works in a coarse to fine manner and processes a
pre-rectified MxN light field frame in one run. Initially, the
algorithm builds up a multi-scale image pyramid for all input
images with a resolution factor 2 between each level. For each
image and each level, the software also builds up Census
descriptors for the following matching step. Starting with the
lowest resolution level, the algorithm matches each image with up
to 4 directly adjacent images. Per pixel and per stereo pair, a low
number of depth candidates (i.e. 5) is evaluated. This is a key
element of Dabala’s method. In addition to the matching costs, the
method computes a confidence value that estimates the reliability
of a depth candidate. Subsequently, a merging, consolidation and
filtering step combines and refines the individual stereo pairs
yielding one depth map for each input image. The next level uses
this depth map as a guide and refines the input disparity map. The
algorithm ends when the original resolution has been reached.

3.2. VR view synthesis model

As outlined, we aim to review a dynamic light field dataset in a VR
environment. Therefore, our system relies on DIBR to generate a
novel view from RGBD input data. However, depth maps only
provide an implicit 3D model. Especially in a VR environment, it
is extremely important that the light field data and the surrounding
CG environment behave consistently. The parallax of the light

field and the CG environment need to match. In order to solve this
issue, our rendering model uses an intermediate screen to transfer
the light field into the virtual environment.
Figure 1 represents the top view of a level inside a gaming
framework such as UE. The player, depicted by the camera Cv can
move freely through the scene. The intermediate screen behaves
like a window that separates CG domain and light field domain.
In case of classical 3D projection, a point M belonging to the actor
can be projected into the views of the spectator and rays intersect
with the screen at distinct points. Equivalently, corresponding
points that individually emerge as rays from these intersection
points appear as being situated behind the screen. Our proposed
method therefore directly computes two individual images for the
left and right view associated with the position of the observer CV.
The rendering engine then maps those images onto the screen and
then further in the spectator’s view.
We implemented this rendering method as plug-in for UE version
4.20. The core shader programs are written in High Level Shading
Language (HLSL). Within the rendering process of each frame, our
plug-in computes individual images for the left and right eye. The
rendering of an image itself consists of forward warping, filtering,
backward- warping, view blending and inpainting.
The implementation uses a dual-buffer system for dynamic light-
field import and rendering. A first buffer is located in host memory
and a second buffer is located in GPU memory. At the current
stage, the system works with uncompressed image data. In terms of
performance, we can render light-fields with about 15MP in total.
Then, rendering one view is below 5ms yielding more than 90
frames in VR as required for HMD systems.

4. EXPERIMENTAL SETUP
In our experimental setup, we evaluate the performance of our
selected method in terms of quality and performance, both for
static scenes as well as for dynamic scenes. Given a sparsely
sampled input light field, we firstly reconstruct the per view depth
as described. Afterwards, we render intermediate view positions
using our real-time DIBR plug-in for UE.

4.1. Quantitative evaluation on static scenes

Here, we follow the evaluation procedure as performed by
Chuchvara et al. [9]. The authors evaluate their method on scenes
taken from the Stanford Lightfield Archive [1]. As input, we also
use a regular 3x3 subset and reconstruct every second image in the
middle row. Table 1 shows the obtained SSIM scores in
comparison with previous work from Dąbała et al. and Chuchvara
et al. On average, our results are slightly lower than the results
reported by Chuchvara. Given the very limited amount of time (see
section 4.4), this low degradation might be acceptable for a
preview or play-back with low delay. In addition, Table 2 lists
PSNR results for Yao’s method and our method. Here, we compare
Yao’s results with a 3x3 and a 5x5 subset of the original 17x17
input data. Our results show that we achieve slightly higher quality
as Yao given only on a 3x3 subset. On a 5x5 subset, our method is
clearly better.
In addition to this numerical results, Figure 2 shows rendering
details for four selected datasets. For the first three datasets, a 3x3
subset has been used as input data.

4.2. Quantitative evaluation on dynamic scenes

In this case, we compare quantitative image quality on video
datasets as provided by Dąbała et al. [5] and also by Sabater et al.
[2]. Instead of skipping views during depth reconstruction and
view synthesis, we compute depth maps for all input views. For
evaluation, we discard depth for a specific view and reconstruct
this view from surrounding camera positions. In our opinion, this
comes close to practical applications but allows for fair evaluation.
For the following evaluation, we discarded and reconstructed the
second camera in the first row on the dataset Painter.
Figure 3 shows the results for frames 0 to 60. The curves compare
results of DERS [15] and our tested combination of depth
reconstruction and view synthesis on full resolution images. Here,
this combination loses about 0.03 points on average compared to
DERS. In addition to full resolution reconstruction, we evaluate
also on half resolution using downscaled input images. For
evaluation, we upscale the result and compare to the full resolution
reference image. In order to quantify this result, Figure 3 shows
two additional curves. These curves evaluate the resolution loss as
introduced by a low pass filter by a factor of 3 and 4, respectively.
Our results range between these curves. This indicates that the

analyzed light field processing loses more than a factor 3, but less
than a factor 4 in terms of true resolution.
In our opinion, when reviewed on a recent HMD with relative low
angular resolution, the quality and resolution of our tested method
satisfies the requirements in these environments. According to our
experience, a proper integration of the rendered content is more
important than having the highest possible resolution.

4.3. Depth reconstruction performance

At the current stage, our system reads pre-captured input data,
streams the data into GPU memory and reconstructs depth for all
views. Up following, the software transfers the data back and
stores the data. Memory transfers are executed asynchronously so
that they do not block computational GPU resources.
Table 3 gives timing details for the 4x4 dataset Painter from a
system perspective and Table 4 lists the timing results for the
individual processing steps on the GPU. The processing of this
dataset including image reading from a RAM drive and image
writing on a RAM drive takes 13.8 seconds, corresponding to 23
fps or 43.5ms per frame. This is a bit faster than the sum of all
elements in Table 3 (46.7ms) and is explainable by the parallel

Table 1: SSIM scores on 3 static datasets. The comparison is
performed on a 3x3 subset per scene.

SSIM
score

Dąbała
et al.

Chuchvara et
al.

Ours

Truck 0.95 0.975 0.971
Bracelet 0.98 0.974 0.956
Jelly Beans n.a. 0.982 0.972

Table 2: PSNR scores for 3 static datasets. The scores show
average PSNR results computed from all views that are not
contained in the input light field.

PSNR
score [db]

Yao
et al.

Ours
(5x5 subset)

Ours
(3x3 subset)

Amethyst 31 37.46 34.50
Truck n.a. 38.63 36.75
Chess 32.9 36.15 33.70

0,855

0,875

0,895

0,915

0 10 20 30 40 50

DERS, full res (avg: 0,91) Ours, full res (avg: 0,88)
1/4 resampl. (avg: 0,86) Ours, half res (avg: 0,88)
1/3 resampl. (avg: 0,89)

Figure 3: SSIM scores for the dataset Painter for frames 0 to
60.

Figure 2: Rendering results on Truck, Chess, Amethyst [1] and
Painter [2]. The first and second rows show the reference image
and the reconstructed image. The third row highlights the
differences. The last row shows a nearby input disparity map.

execution in our implementation. Overall, the performance comes
close to the requirements for real-time applications that start with
about 25 fps. With the latest generation of graphics cards or several
graphics cards, the performance could be increased even further.
The method proposed by Chuchvara requires 5.3s for a 3x3 light
field (588ms per view) on a GPU with 1017 GFLOPS (NVIDIA
QUADRO M1000M). The NVIDIA 1080Ti used in our
experiments provides 11340 GFLOPS.
If Chuchvara’s method scales linearly with the GPU’s capabilities,
the method would still require about 474ms for a complete light
field. Hence, our method is computationally more efficient
(36.97ms for a complete light field on a comparable dataset).

5. CONCLUSION

In this work, we analyzed near real-time depth reconstruction and
real-time view synthesis. Our aim was to enable on set light-field
play-back in VR with parallax. Our results show that we achieve
near real-time performance for the depth reconstruction and real-
time view synthesis on a single PC with a single GPU. The system
processes a 4x4 light field video with 317 frames in 13.8 seconds.
When reviewed on an HMD or on a display, the result shows only
very little visual artifacts. The multi-scale approach of the
underlying depth-reconstruction is advantageous since its low-pass
characteristic hides possible view-synthesis artifacts.
In future, we’d like to integrate the temporal domain in our
algorithm. Here, further improvements in terms of performance
and quality can be expected. If possible, we would like to integrate
image acquisition, depth processing and rendering in a single
software. The results as presented indicate that such a software
could be beneficial.
The Fraunhofer and the Max Planck cooperation program within
the framework of the German pact for research and innovation
(PFI) supported this work.

6. REFERENCES

[1] A. Adams, “The (New) Stanford Light Field Archive,” 2008.
[2] N. Sabater, G. Boisson, B. Vandame, P. Kerbiriou, F. Babon,
M. Hog, R. Gendrot, T. Langlois, O. Bureller, and A. Schubert,
“Dataset and Pipeline for Multi-view Light-Field Video,” in
Computer Vision and Pattern Recognition Workshops (CVPRW),
2017 IEEE Conference on, 2017, pp. 1743-1753.

 [3] R. S. Overbeck, D. Erickson, D. Evangelakos, and P. Debevec,
“Welcome to light fields,” in ACM SIGGRAPH 2018 Virtual,
Augmented, and Mixed Reality, Vancouver, British Columbia,
Canada, 2018, pp. 32.
[4] M. Ziegler, J. Keinert, N. Holzer, T. Wolf, T. Jaschke, R. op het
Veld, F. S. Zakeri, and S. Foessel, “Immersive virtual reality for
live-action video using camera arrays,” in IBC Conference,
Amsterdam, Netherlands, 2017, pp. 1-8.
[5] Ł. Dąbała, M. Ziegler, P. Didyk, F. Zilly, J. Keinert, K.
Myszkowski, H. P. Seidel, P. Rokita, and T. Ritschel, “Efficient
Multi‐image Correspondences for On‐line Light Field Video
Processing,” in Computer Graphics Forum, 2016, pp. 401-410.
[6] M. Levoy, and P. Hanrahan, "Light field rendering." pp. 31-42.
[7] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D.
Calabrese, H. Hoppe, A. Kirk, and S. Sullivan, “High-quality
streamable free-viewpoint video,” ACM Transactions on Graphics
(TOG), vol. 34, no. 4, pp. 69, 2015.
[8] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A.
Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance
imaging using large camera arrays,” ACM Transactions on
Graphics (TOG), vol. 24, no. 3, pp. 765-776, 2005.
[9] A. Chuchvara, A. Barsi, and A. Gotchev, “Fast and Accurate
Depth Estimation from Sparse Light Fields,” arXiv preprint
arXiv:1812.06856, 2018.
[10] L. Yao, Y. Liu, and W. Xu, “Real-time virtual view synthesis
using light field,” EURASIP Journal on Image and Video
Processing, vol. 2016, no. 1, pp. 25, 2016.
[11] M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. R. Fanello,
A. Kowdle, S. O. Escolano, C. Rhemann, D. Kim, and J. Taylor,
“Fusion4d: Real-time performance capture of challenging scenes,”
ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp. 114,
2016.
[12] E. De Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel,
and S. Thrun, “Performance capture from sparse multi-view
video,” ACM Transactions on Graphics (TOG), vol. 27, no. 3, pp.
98, 2008.
[13] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and
A. Kolb, “Real-time 3d reconstruction in dynamic scenes using
point-based fusion,” in 3D Vision-3DV 2013, 2013 International
Conference on, 2013, pp. 1-8.
[14] L. Z. Eric Penner, “Soft 3d reconstruction for view synthesis,”
ACM Transactions on Graphics (Proc. SIGGRAPH Asia), vol. 36,
2017.
[15] K. Wegner, and O. Stankiewicz, “DERS Software Manual,”
Sapporo, 2014.

Table 3: Timing results from system perspective in ms.

Image reading 5.65
CPU to GPU memory transfer 3.91
Depth reconstruction 18.11
GPU to CPU memory transfer 2.83
Image saving 16.31

Table 4: Depth reconstruction timing results for two light-field
datasets and specific processing steps in ms.

Light field views
Image resolution

3x3
1920 x 1080

4x4
960 x 540

Creating Mip-Map 3.99 1.80
Matching 7.05 2.90
Consolidation 3.91 2.32
Smoothening 17.65 8.33
Up sampling 4.37 2.07
Total 36.97 17.42

	Abstract
	In our experimental setup, we evaluate the performance of our selected method in terms of quality and performance, both for static scenes as well as for dynamic scenes. Given a sparsely sampled input light field, we firstly reconstruct the per view de...

