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Abstract— Skin detection consists in detecting human skin
pixels from an image. Skin detection plays an important role
in various applications such as face detection, searching and
filtering image content on the web. In this paper we propose
a novel skin detection algorithm based on tree distribution. A
tree distribution that is more general then a bayesian network,
can represent a joint distribution in an intuitive and efficient
way. We assess the performance of our method on the Compaq
database.

I. INTRODUCTION

Skin detection consists in detecting human skin pixels
from an image. The system output is a binary image defined
on the same pixel grid as the input image.

Skin detection plays an important role in various appli-
cations such as face detection [1], searching and filtering
image content on the web [2][3][4]. Research has been
performed on the detection of human skin pixels in color
images by use of various statistical color models [5][6]. Some
researchers have used skin color models such as Gaussian,
Gaussian mixture or histograms [7][8]. In most experiments,
skin pixels are acquired from a limited number of people
under a limited range of lighting conditions.

Unfortunately, the illumination conditions are often un-
known in an arbitrary image, so the variation in skin colors
is much less constrained in practice. This is particularly true
for web images captured under a wide variety of conditions.
However, given a large collection of labeled training pixels
including all human skin (Caucasians, Africans, Asians)
we can still model the distribution of skin and non-skin
colors in the color space. Recently Jones and Rehg [9]
proposed techniques for skin color detection by estimating
the distribution of skin and non-skin color in the color space
using labeled training data. The comparison of histogram
models and Gaussian mixture density models estimated with
EM algorithm was analyzed for the standard 24-bit RGB
color space. The histogram models were found to be slightly
superior to Gaussian mixture models in terms of skin pixel
classification performance for this color space.

A skin detection system is never perfect and different users
use different criteria for evaluation. General appearance of
the skin-zones detected, or other global criteria might be
important for further processing. For quantitative evaluation,
we will use false positives and detection rates. False positive
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rate is the proportion of non-skin pixels classified as skin
and detection rate is the proportion of skin pixels classified as
skin. The user might wish to combine these two indicators his
own way depending on the kind of error he is more willing
to afford. Hence we propose a system where the output is
not binary but a floating number between zero and one, the
larger the value, the larger the belief for a skin pixel. The
user can then apply a threshold to obtain a binary image.
Error rates for all possible thresholding are summarized in
the Receiver Operating Characteristic (ROC) curve.

We have in our hands the publicly available Compaq
Database [9]. It is a catalog of almost twenty thousand
images. Each of them is manually segmented such that the
skin pixels are labelled. Our goal is to infer a model from
this set of data in order to perform skin detection on new
images.

In this paper we are interested in two aspects. First, we
will present a reasonably quick skin detection algorithm that
outperform the standard method. Second, we will learn the
dependencies or the structure between pixels within a skin
patch and use it for classification. To achieve this goal, in
this work we will use a tree distribution method developed in
[10] that we assume more general than a bayesian network
[11] and represents a joint distribution in an intuitive and
efficient way.

The paper is organized as follows: in section II, we
introduce the notation that will be used throughout the paper
and we present the features used. Section III details our
tree distribution classifiers model. Section IV is devoted
to experiments and comparisons with alternative method.
Finally, the conclusion and some perspectives are given in
section V.

II. NOTATIONS AND METHODOLOGY

Let’s fix the notations. The set of pixels of an image is
S. We consider the RGB color space, the color of a pixel
s ∈ S is xs. It is a 3 dimensional vector, each component
being coded on one octet. (is, js) is the coordinate of s.
The ”skinness” of a pixel s, is ys with ys = 1 if s is
a skin pixel and ys = 0 if not. The color image, which
is the vector of color pixels, is notated x and the binary
image made up of the ys’s is notated y. In order to take into
account the neighboring influence between pixels, we define
the following neighborhood system :

Vs = {(i, j)/|i− is| < a, |j − js| < a}; s ∈ S, a ∈ N (1)

Thus, we consider a vector of observations X which stands
for an image patch (k × k, k = 2a − 1). We consider a
vector B = (x1, x2, . . . , xk2) decomposed until a low-level



element; we note the resultant vector X = (x1, x2, . . . , xn)
where n = 3k2.

Let’s assume for a moment that we knew the joint
probability distribution r(X, ys) of the vector (X, ys), then
Bayesian analysis tells us that, whatever cost function the
user might think of, all that is needed is the a-posterior
distribution r(ys|X).

From the user’s point of view, the useful information
is contained in the one pixel marginal of the a-posterior
probability, that is, for each pixel, the quantity r(ys =
1|X), quantifying the belief for skinness at pixel s. In
practice the model r(X, ys) is unknown. Instead, we have the
segmented Compaq Database. It is a collection of samples
{(x(1), y(1)), . . . , (x(N), y(N))} where for each 1 ≤ i ≤ N ,
x(i) is a color image and y(i) is the associated binary
skinness image. We assume that the samples are independent
each other with the distribution r(X, ys). The collection of
samples is referred later as the training data.

Our objective is to construct a probabilistic classifiers that
represent the posterior probabilities r(ys = 1|X) and r(ys =
0|X) of skinness at pixel s given the patch, using a single
tree distribution. To simplify notation throughout the paper,
we use r(X|ys = 1) = p(X) and r(X|ys = 0) = q(X).

Let’s consider a complete non oriented graph G(V, E)
corresponding to X; each element xu of X is a vertex. V
and E are the sets of vertices and edges. We note that xu

and u refer to the same vertex. Two neighbor vertices xu and
xv are noted u ∼ v. Now, the task is to find a non oriented
acyclicgraph (tree) modelling r(X, ys).

III. TREE DISTRIBUTION

We consider a probabilistic classifier that represent the a-
posteriori probability by using tree models. Let us assume
for now that the graph G was a tree: that is a connected
graph without loops which we note T.

Proposition 1: [12]

rT (x) =
∏

(u∼v)∈T

ruv(xu, xv)
ru(xu)rv(xv)

∏

u∈V

ru(xu) (2)

where ru(xu) is one-vertex marginal of r and ruv(xu, xv)
is it’s two-vertices marginal, defined as:

ru(xu) =
∑

xv;v∈V ;v 6=u

rT (x) (3)

ruv(xu, xv) =
∑

xu;u∈V ;u 6=u,v

rT (x) (4)

1 =
∑

xu;u∈V

rT (x) (5)

We note nu the number of the neighbors of vertex xu; it
follows

∏
u∼v ru(xu)rv(xv) =

∏
u∈V rnu

u (xu). The Eq. (2)
becomes :

rT (x) =
∏

(u∼v)∈T

ruv(xu, xv)
∏

u∈V

r1−nu
u (xu) (6)

A. Learning of tree distribution

The learning problem is formulated as follows: given a
set of observations X = {x1, x2, ..., xn} we want to find
one tree T in which the distribution probability is efficient
for two different classes: skin and non skin.

Thus, to deal with the problem, we propose to maximize
the Kullback-Leibler divergence[13] between two probability
mass functions p(x) and q(x) corresponding to two different
classes. Therefore, we give the following statement.

Statement 1: Probabilities distributions of tree depen-
dence pT (x) and qT (x) are respectively the optimum ap-
proximations to the true probabilities p (x) and q (x) if and
only if :

1) their dependence tree T has the maximum weight.
2) the number of the neighbors of each vertex is the

minimum.
Proof. We assume that there exists a tree T in which each

vertex is a variable in X = (x1, x2, ..., xn) ; T models two
distributions p and q approximated by pT and qT according
to (6).
The Kullback-Leibler divergence (KL) between pT and qT

is :

KL (pT , qT ) =
∑

x

pT (x) log
pT (x)
qT (x)

=
∑

x

pT (x) log pT (x)−
∑

x

pT (x) log qT (x) (7)

On the one hand
∑

x

pT (x) log pT (x) =
∑

x

pT (x) ∗

log





∏

(u∼v)∈T

puv(xu, xv)
∏

u∈V

p1−nu
u (xu)





=
∑

x

pT (x)
∑

(u∼v)∈T

log puv(xu, xv)+

∑
x

pT (x)
∑

u∈V

(1− nu) log pu(xu) (8)

On the other hand
∑

x

pT (x) log qT (x) =
∑

x

pT (x)
∑

(u∼v)∈T

log quv(xu, xv)+

∑
x

pT (x)
∑

u∈V

(1− nu) log qT (xu) (9)

From (8) - (9), Eq. (7) becomes

KL (pT , qT ) =
∑

x

pT (x)
∑

(u∼v)∈T

log
puv(xu, xv)
quv(xu, xv)

+

∑
x

pT (x)
∑

u∈V

(1− nu) log
pT (xu)
qT (xu)

(10)



Moreover,
∑

x

pT (x)
∑

(u∼v)∈T

log
puv(xu, xv)
quv(xu, xv)

=

∑

(u∼v)∈T

∑

u,v∈V

puv(xu, xv) log
puv(xu, xv)
quv(xu, xv)

=
∑

(u∼v)∈T

KL(puv, quv) (11)

and
∑

x

pT (x)
∑

u∈V

(1− nu) log
pu(xu)
qu(xu)

=

∑

u∈V

∑

u∈V

(1− nu)pu(xu) log
pu(xu)
qu(xu)

=
∑

u∈V

(1− nu)KL(pu, qu) (12)

Thus, we obtain :

KL(pT , qT ) =
∑

(u∼v)∈T

KL(puv, quv) +

∑

u∈V

(1− nu)KL(pu, qu) (13)

Since, for all xu ∈ V , the KL(pu, qu) are indepen-
dent of the dependence tree and KL divergence is non-
negative, maximizing the closeness measure KL(pT , qT )
is equivalent to maximizing the total branch weight∑

(u∼v)∈T KL(puv, quv) and minimizing the number of the
neighbors of each vertex nu. Proof concluded.

The optimal solution of the problem (maximizing the
total branch weight of tree dependence and minimizing the
number of the neighbors of each vertex) as formulated is not
trivial [14]. In this paper we focused on maximizing the total
branch weight of tree dependence :

T ∗ = argmaxT

∑

(u∼v)∈T

KL(puv, quv) (14)

In order to give a more detailed description of our model,
we present the following procedure (1):

Procedure 1: .

• Input : Dataset
{(

x(1), y(1)
)
, · · · ,

(
x(n), y(n)

)}

1) Fix a ∈ N to define the neighborhood system of a
pixel s as :

Vs = {(i, j)/|i− is| < a, |j − js| < a}; s ∈ S

2) Consider a bloc B (k×k) where k = 2a−1. Build
the vector of observables X such as each element
of X is a sample.

3) Build a complete non oriented graph G(V, E)
corresponding to X; each element of X is a vertex.

4) Let xu and xv be two different vertices. Use the
maximum-likelihood estimator to compute the two

vertices-marginal puv(xu, xv) and quv(xu, xv) of
pT and qT as

puv(xu = i, xv = j) = f1
ij(xu, xv)

quv(xu = i, xv = j) = f0
ij(xu, xv)

Where, for (m = 1, 0), fm
ij (xu, xv) is the sample

joint frequency of xu = i and xv = j such as
theirs labels are 1 or 0.

5) Compute the simple KL divergence KL(puv, quv),
for all xu and xv , as

KL(puv, quv) =
∑

u,v∈V

puv(xu, xv) log
puv(xu, xv)
quv(xu, xv)

6) Build a maximum weighted spanning tree
(MWST)[15].

• Output : The tree T in which the distribution probability
is efficient for two different classes.

B. Inference

We would like to compute the state of the pixel ys,
according to the states of the pixels of the patch X . By
applying the Bayes’ rule, we obtain:

r(ys = j|X) =
r(ys = j)r(X|ys = j)

r(X)
, j = 0, 1. (15)

Moreover,

r(X) =
1∑

ys=0

r(X, ys) =
1∑

i=0

r(X|ys = i)r(ys = i)

In which

r(X|ys = 0) ≈
∏

(u∼v)∈T quv(xu, xv)∏
u∈V qu(xu)(nu−1)

= qT (X)

r(X|ys = 1) ≈
∏

(u∼v)∈T puv(xu, xv)∏
u∈V pu(xu)(nu−1)

= pT (X)

r(ys = 0) ≈ qT (ys = 0) r(ys = 1) ≈ pT (ys = 1)

Therefore

r(ys = 0|X) ≈

qT (ys = 0)qT (X)
pT (ys = 1)pT (X) + qT (ys = 0)qT (X)

(16)

And

r(ys = 1|X) ≈

pT (ys = 1)pT (X)
pT (ys = 1)pT (X) + qT (ys = 0)qT (X)

(17)

All the elements of Eq. (16) and Eq. (17) are previously
computed in Step (4) of our algorithm.



Fig. 1. Top : original color images. Bottom : results of our algorithm
model.

Fig. 2. Top : original images. Bottom : the corresponding tree distribution
model. The first two images show false positive pixels, while the other two
columns show false negative pixels

IV. SKIN DETECTION EXPERIMENTS

All experiments are made using the following protocol.
The Compaq database contains about 18,696 photographs. It
is split into two almost equal parts randomly. The first part,
containing nearly 2 billion pixels is used as training data
while the other one, the test set, is left aside for ROC curve
computation.

In our skin detection application we define the neighbor-
hood system of a pixel in which a = 2. Thus the image
patch considered is 3×3. However, we consider RGB space,
therefore the size of the vector observables X is 27. The
Compaq Database is large enough so that crude histograms
made with 512 color value per bin uniformly distributed do
not over-fit. Each histogram is then made of 32 bins. The
experiments are presented in figures 1 and 3.

Bulk results in the ROC curve of Figure 3 show an
improvement of performance around 1, 33%. At 4, 74% of
false positive rate, the baseline which is an independent
model[5][8] permits to detect around 74, 84% of skin pixels
and the tree distribution model around 76, 17%. Figure 2
shows some cases where our detector failed. It is due to
over-exposure or to skin-like color.

Another way to compare classification algorithms over
multiple thresholding values is to compute the area under
the roc curve (AUC). Using [0; .075] for integration interval,
the normalized AUC, that is, the AUC is 0.030 for the
baseline model, 0.048 for our approach confirming the results
obtained above for a single false positive rate.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a new algorithm based on
tree distribution model for skin detection. By making some
assumptions, we propose a tree model which maximizes a

Fig. 3. Receiver Operating Characteristics (ROC) curve for each model.
x-axis is the false positive rate, y-axis is the detection rate which is the
complement to one of the false negative rate. The baseline model is shown
with read crosses and the tree distribution with blue triangles.

Kullback-Leibler divergence between a skin distribution and
non skin distribution. Performance measured by the ROC
curve on the Compaq database shows an increase in detection
rate from 1% to 5, 5% for the same false positive rate of
the tree distribution comparing to the baseline model which
suppose the independence of pixels.

This approach could be used to classify other textures.
In future work we apply our skin detection tree distribution
scheme to block adult images from Internet.
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