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Abstract
This paper investigates approaches for low dimensional speech
feature transformation using manifold learning. It has recently
been shown that speech sounds may exist on a low dimensional
manifold nonlinearly embedded in high dimensional space. A
number of techniques have been developed in recent years that
attempt to discover the geometric structure of the underlying
low dimensional manifold. The manifold learning techniques
locally linear embedding and Isomap are considered in this
study. The low dimensional feature representations produced
by these techniques are applied to several phone classification
tasks on the TIMIT corpus. Classification accuracy is analysed
and compared to conventional MFCC features and PCA, a lin-
ear dimensionality reduction method, transformed features. It
is shown that features resulting from manifold learning are ca-
pable of yielding higher classification accuracy than these base-
line features. The best phone classification accuracy in general
is demonstrated by feature transformation with Isomap.

1. Introduction
Feature transformation is an important part of the speech recog-
nition process and can be viewed as a two step procedure.
Firstly, relevant information is extracted from short time seg-
ments of the acoustic speech signal using a procedure such
as Fourier analysis, cepstral analysis or some other perceptu-
ally motivated analysis. The resultingD-dimensional param-
eter vectors are then transformed to a feature vector of lower
dimensionalityd (d ≤ D). The aim of dimensionality reduc-
tion is to produce features which are concise low dimensional
representations that retain the most discriminating information
for the intended application and are thus more suitable for pat-
tern classification. Dimensionality reduction also decreases the
computational cost associated with subsequent processing.

Physiological constraints on the articulators limit the de-
grees of freedom of the speech production apparatus. As a result
humans are only capable of producing sounds occupying a sub-
space of the acoustic space. Thus, speech data can be viewed
as lying on or near a low dimensional manifold embedded in
the original acoustic space. The underlying dimensionality of
speech has been the subject of much previous research includ-
ing classical dimensionality reduction analysis [1, 2], nonlinear
dynamical analysis [3] and manifold learning [4]. The consen-
sus of this work is that some speech sounds, particularly voiced
speech, are inherently low dimensional.

Dimensionality reduction methods aim to discover this un-
derlying low dimensional structure. These methods can be cat-
egorised as linear or nonlinear. Linear methods are limited to
discovering the structure of data lying on or near a linear sub-
space of the high dimensional input space. The most widely
used linear dimensionality reduction methods include principal

component analysis (PCA) [5] and linear discriminant analysis
(LDA) [6]. These methods have been successfully applied to
feature transformation in speech processing applications [7, 8]
in the past.

However if speech data occupies a low dimensional sub-
manifold nonlinearly embedded in the original space, as pro-
posed previously [2, 4], linear methods will fail to discover
the low dimensional structure. A number of manifold learn-
ing, also referred to as nonlinear dimensionality reduction, al-
gorithms have been developed [9–11] which overcome the lim-
itations of linear methods. Manifold learning algorithms have
recently been shown to be useful in a number of speech pro-
cessing applications including low dimensional visualization of
speech [4,11–14] and limited phone classification tasks [14,15].

In this paper, we build upon previous work and apply two
manifold learning algorithms, locally linear embedding (LLE)
[9] and isometric feature mapping (Isomap) [10], to extract
features from speech data. These features are evaluated in
phone classification experiments using a support vector ma-
chine (SVM) [16] classifier. The classification performance of
these features is compared to baseline Mel-frequency cepstral
coefficients (MFCC) and those resulting from the classical lin-
ear method, PCA.

The remainder of this paper is structured as follows. In Sec-
tion 2, the manifold learning algorithms LLE and Isomap are
briefly described. Section 3 details the experimental procedure,
data set, parameter extraction, feature transformation and clas-
sification technique used. Results are examined and discussed
in Section 4, with conclusions presented in Section 5. Finally,
possibilities for future work are outlined in Section 6.

2. Manifold learning algorithms
2.1. Locally linear embedding

LLE [9] is an unsupervised learning algorithm that computes
low dimensional embeddings of high dimensional data. The
principle of LLE is to compute a low dimensional embedding
with the property that nearby points in the high dimensional
space remain nearby and similarly co-located with respect to
one another in the low dimensional space. In other words, the
embedding is optimised to preserve local neighbourhoods.

The LLE algorithm can be summarised in three steps:

1. For each data pointXi, compute itsk nearest neighbours
(based on Euclidean distance or some other appropriate
definition of ‘nearness’).

2. Compute weightsWij that best reconstruct each data
pointXi from its neighbours, minimising the reconstruc-
tion errorE:
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3. Compute the low dimensional embeddingsYi, best re-
constructed by the weightsWij , minimising the cost
functionΩ:
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In step 2, the reconstruction error is minimised subject to two
constraints: first, that each input is reconstructed only from its
nearest neighbours, orWij = 0 if Xi is not a neighbour of
Xj ; second, that the reconstruction weights for each data point
sum to one, or

∑

j
Wij = 1 ∀i. The optimum weights for each

input can be computed efficiently by solving a constrained least
squares problem.

The cost function in step 3 is also based on locally linear
reconstruction errors, but here the weightsWij are kept fixed
while optimising the outputsYi. The embedding cost function
in Equation (2) is a quadratic function inYi. The minimisation
is performed subject to constraints that the outputs are centered
and have unit covariance. The cost function has a unique global
minimum solution for the outputsYi. This is the result returned
by LLE as the low dimensional embedding of the high dimen-
sional data pointsXi.

2.2. Isomap

The Isomap algorithm [10] offers a differently motivated ap-
proach to manifold learning. Isomap is a nonlinear generalisa-
tion of multidimensional scaling (MDS) [6] that seeks a map-
ping from high dimensional spaceX to low dimensional feature
spaceY that preserves geodesic distances between pairs of data
points—that is, distances on the manifold from which the data
is sampled.

While Isomap and LLE have similar aims, Isomap is based
on a different principle than LLE. In particular, Isomap attempts
to preserve the global geometric properties of the manifold
while LLE attempts to preserve the local geometric properties
of the manifold.

As with LLE, the Isomap algorithm consists of three steps:

1. Construct a neighbourhood graph - Determine which
points are neighbours on the manifold based on distances
l(i, j) between pairs of pointsi, j in the input space
(as in step 1 of LLE). These neighbourhood relations
are then represented as a weighted graph over the data
points with edges of weightl(i, j) between neighbour-
ing points.

2. Compute the shortest path between all pairs of points
among only those paths that connect nearest neighbours
using a technique such as Dijkstra’s algorithm.

3. Use classical MDS to embed the data in ad-dimensional
Euclidean space so as to preserve these geodesic dis-
tances.

3. Experiments
3.1. Classification tasks

The objective of these experiments is to perform phone clas-
sification using four different feature types: baseline MFCC
vectors and features produced by applying PCA, Isomap and
LLE to MFCC vectors. Each feature type was evaluated in
three phone classification experiments. The first experiment in-
volves distinguishing between a set of five vowels (‘aa’, ‘iy’,

‘uw’, ‘eh’, and ‘ae’). Phones are labeled using TIMIT sym-
bols [17]. In the second test, a further five vowels (‘ah’, ‘ay’,
‘oy’, ‘ih’ and ‘ow’) were added to the previous vowel set, form-
ing a more complex ten class vowel classification problem. The
final test involves classifying a set of 19 phones into their asso-
ciated phone classes. The phone classes and phones used were:
vowels (listed above), fricatives (‘s’, ‘sh’), stops (‘p’, ‘t’, ‘k’),
nasals (‘m’, ‘n’) and, semivowels and glides (‘l’, ‘y’).

3.2. Data

The speech data used in this study was taken from the TIMIT
corpus [17]. This corpus contains 6300 utterances, 10 spoken
by each of 630 American English speakers. The speech record-
ings are provided at a sampling frequency of 16 kHz.

3.3. Parameter extraction

Based on the phonetic transcriptions and associated phone
boundaries provided in TIMIT all units of a subset of phones,
listed in Section 3.1, were extracted from the corpus. One 40 ms
frame was extracted from the middle of each phone unit (units
of duration less than 100 ms were discarded). The raw speech
frames were amplitude normalised, preemphasized with the fil-
ter H(z) = 1 − 0.98z−1 and Hamming windowed. Following
this preprocessing, 19-dimensional MFCC vectors were com-
puted for each frame. These MFCC vectors serve as both a
baseline feature and high dimensional input for PCA, Isomap
and LLE methods.

3.4. Feature transformation

For each of the three phone classification experiments, 250 units
representing each of the required phones were chosen at ran-
dom from those extracted above to make up the data set. PCA,
Isomap and LLE were applied to the equivalent set of MFCC
vectors.

In order to examine the ability of the feature transformation
methods to compute concise representations of the input vec-
tors retaining discriminating information, the dimensionality of
the resulting feature vectors was varied from 1 to 19. A sepa-
rate classifier was subsequently trained and tested using feature
vectors with each of the 19 different dimensionalities. Thus the
ability of these feature transformation methods to produce use-
ful low dimensional features could be evaluated and changes in
performance with varying dimension analysed. As a baseline
the original MFCC vectors were used, also varying in dimen-
sionality from 1 to 19.

The number of nearest neighbours,k, used in Isomap and
LLE was set equal to 14 and 6 respectively. These values were
chosen empirically by varyingk and examining classification
performance. The performance of both methods was found to
be sensitive to the choice ofk.

3.5. Support vector machine classification

SVM [16], a powerful classification tool, was used in these ex-
periments. SVM is a binary pattern classification algorithm.
For our experiments it is necessary to construct a multiclass
classifier. This was achieved using a one-against-one training
scheme, training one classifier for every possible pair of classes.
The final classification result was determined by majority vot-
ing.

It is also necessary to choose an appropriate kernel func-
tion to be used in the SVM. In order to select an effective
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Figure 1:Five vowel classification results for baseline MFCC,
PCA, Isomap and LLE features on the TIMIT database.

kernel, different SVM models using linear, polynomial and ra-
dial basis function (RBF) kernels were evaluated in a number
of phone classification tasks. SVM with RBF kernel demon-
strated the best classification accuracy and is used for classi-
fication throughout this work. The RBF kernel used is given
in Equation (3) below, withx andx′ feature vectors andd the
feature vector dimensionality.

K(x, x
′) = exp(−

1

d

∥

∥x − x
′
∥

∥

2

) (3)

In all classification experiments 80% of the data was as-
signed as training data with the remaining 20% withheld and
used as unseen testing data.

4. Results
In each experiment the classifier was evaluated on each of the
four feature types. The dimensionality of the feature vectors
used in the experiment vary from 1 to 19—the original, full di-
mension. Results are presented for evaluation on both the train-
ing data and testing data.

Fig. 1 shows the results of the five vowel classification task
using the baseline MFCC, PCA, Isomap and LLE features. The
percentage of phones correctly classified is given on the verti-
cal axis. The horizontal axis represents the dimensionality of
the feature vector. The results in Fig. 1 can be summarized as
follows:

• The performance of the baseline MFCC vectors im-
proves with increasing dimensionality, plateauing at a
dimensionality of approximately 8.

• PCA features offer improvements over baseline MFCC
for low dimensions, 1 to 7.

• For the training data, maximum classification accuracy
in all dimensions is demonstrated with Isomap features,
outperforming all other features including the original
full 19-dimensional MFCC vectors.

• Isomap features also offer performance comparable to,
and in some dimensions better than, other features on
the testing data.

• Accuracy with LLE features is better than both MFCC
and PCA in low dimensions, (d < 3). However in higher
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Figure 2: Ten vowel classification results for baseline MFCC,
PCA, Isomap and LLE features on the TIMIT database.

dimensions LLE features do not offer a performance in-
crease over other methods.

Results for ten vowel classification are given in Fig. 2. The
results are similar to those of the task above, with reduced clas-
sification accuracy due to increased complexity and increased
possibility of phone confusion. The important findings are as
follows:

• Again, Isomap performs best for the training data, and
also for testing data in low dimensions (d < 8).

• Isomap, PCA and MFCC performance reach a flat per-
formance level from approximately 10 dimensions.

• A classification accuracy of 48.2% is achieved on the
testing data with 5-dimensional Isomap features. This
performance is only exceeded by much higher dimen-
sional, (d > 12), MFCC and PCA features.

The mean classification accuracy results for each feature type in
the ten vowel classification task are presented in Table 1. The
mean accuracy scores were computed for the testing data eval-
uation. Averages are computed for three dimensionality ranges.
It can be seen that Isomap gives the highest average accuracy
in all ranges. LLE is shown to perform better than PCA and
MFCC in low dimensions.

Dimensions MFCC PCA Isomap LLE

1–5 32.2000 38.3200 43.5600 38.6000
6–19 47.0000 47.0143 47.5286 44.6286
1–19 43.1053 44.7263 46.4842 43.0421

Table 1: Mean classification accuracy in the ten vowel classifi-
cation task for MFCC, PCA, Isomap and LLE features.

Phone class classification results are presented in Fig. 3.
The following is evident:

• Best accuracy is achieved in all dimensions with Isomap
features.

• PCA and MFCC features yield similar performance,
with PCA features offering improved accuracy for low
dimensional features.
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Figure 3:Phone class classification results for baseline MFCC,
PCA, Isomap and LLE features on the TIMIT database.

• LLE features give the lowest classification rates, except
for 2 and 3 dimensional features where they are second
only to Isomap.

5. Conclusions

In this paper a phone classification system based on nonlinear
manifold learning was proposed and evaluated against a base-
line linear dimensionality reduction method, PCA, and con-
ventional MFCC features. All of the dimensionality reduction
methods presented outperform the baseline MFCC features for
low dimensions. This illustrates the capability of these meth-
ods to extract discriminating information from the original 19-
dimensional MFCC features.

Higher classification accuracy is shown for manifold learn-
ing derived features compared to baseline MFCC and PCA fea-
tures for low dimensions. Also, in general Isomap yields su-
perior performance to both MFCC and PCA features. This in-
dicates that nonlinear manifold learning algorithms are more
capable of retaining information required for discriminating be-
tween phones, especially in low dimensional space.

Comparing the manifold learning methods, Isomap demon-
strates better classification accuracy than LLE. This indicates
that preserving global structure rather than local relationships
may be more important for speech feature transformation.

6. Future Work

Possible future work includes the application of the mani-
fold learning feature transformation procedure presented here
to continuous ASR. The manifold learning methods described
above are batch processing algorithms. A number of out-of-
sample extensions have been proposed to overcome this limi-
tation. In the future these out-of-sample approaches could be
developed for use with speech data.
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