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ABSTRACT

This paper outlines a Wavelet Transform (WT) based Artificial
Neural Network (ANN) input data pre-processing scheme and
presents the results of localized gear tooth defect recognition
tests by employing this proposed methodology. The
methodology consists of calculating Daubechies’ 20-order
(DAUB-20) mean-square dilation WTs of the data, and then
selecting predominant wavelet coefficients distributed to certain
levels of these WTs as inputs to ANNs for pattern recognition.
The test results show that a fairly small sized backpropagation
network trained with a reasonably small number of training sets
can detect and classify various types or degrees of failures
occurring on a spur gear pair successfully.

1. INTRODUCTION

Of the features that are available to a classification method, it is
extremely beneficial to identify those that provide the most
discriminative information and also identify those that may be
redundant. By removing the useless features, classification
becomes less computationally demanding. Additionally, when
an ANN is considered as a classifier, limiting the number of
features is critical to the reduction in the number of training
samples required. Reducing the dimension of the input vector in
an effective way will also enhance the network’s fault-tolerance
and generalization capabilities. These characteristics will lead
the network to recognize the cases in the state of having
corrupted or less number of training data, or to recognize cases,
which has never met before.

When a rotating machinery vibration signal pre-processor to
ANNs is considered, it should be noted that non-stationary or
transitory characteristics such as, drift, trends, abrupt changes,
and beginnings and ends of events are the most important part
of the signal, since they can reveal abnormal changes
representing a failure. Statistical or Fourier Transform (FT)
based analysis is not suited to detecting them. Whereas wavelet
transforms (discrete or continuous) pinpoint those localized
features by means of their variable-sized windows. Discrete
wavelet transform (associated with the “time-scale” type
wavelets) can adapt to signals having a discontinuous structure
more suitably. Furthermore, having been computed with fast

algorithms and being able to reproduce the original signal make
discrete WT practical in the analysis of machinery vibration
signals, Engin et al. 1996 [5], <HúLO\XUW DQG %DOO ����>��@�
Badi. et al. 1997 [2].

Daubechies wavelet transforms are discrete WTs and can be
computed by fast algorithms (namely, Mallat’s pyramid
algorithm). They can provide compact input vectors with their
powerful feature extraction capabilities. Additionally,
Daubechies WT based mean-square wavelet maps show the
distribution of each wavelet coefficient to the particular wavelet
level. Analyzing the most informative levels by means of a
pattern recognition technique can reveal sound clues for Fault
Diagnostics of rotating machinery. Daubechies 20-order WT
works with wavelets with more vanishing moments, which is
significant for suppressing the details and highlighting the
remainder. Hence choosing a large number, for example 20, will
ensure Daubechies WT being computed in optimum speed and
an effective feature extraction tool.

The performance of the methodology was tested with both
numerically simulated and experimentally acquired spur gear
vibration time signals. The seeded localized tooth defects were
kept as small as possible to emulate impending failure
realistically. This was important from the point of carrying out
early fault detection applications. A multilayer ANN fed by the
proposed WT based signal features identified the faulty signal
features from the healthy ones very successfully. When the
trained network was introduced with the feature vectors for two
types of faults and their reference (healthy) states, the network
classified them with very high success rates ranging from 70%
to 100%.

A brief theory of wavelet transforms and their effective
computation method with an emphasis on the considerations of
the choice of wavelet families are presented in the following
section. Then the proposed WT–ANN based fault diagnostics
methodology is outlined. This is followed by the experimental
results with related graphs, tables and discussions. Finally, the
paper reaches the conclusion section, which draws the relevant
conclusions of the research findings and suggests some
directions for future investigations.



2. WAVELET TRANSFORM
As known, the basic idea in time-frequency representations is
that two parameters are needed: one called a, which refers to
frequency; the other called b, which indicates the position in the
signal. Thus a general time-frequency transform of a signal x
will take the form,
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where ψab is the analyzing function and ψ ab  (indicated also as

ψ* ) is its complex conjugate. In wavelet transform, the
analyzing function ψ is defined as,
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Combining the Equations 1 and 2, the basic formula for the
continuous WT (CWT) can be obtained as,
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In discrete WT (DWT), the two parameters a and b which are
for scaling and translating, respectively can be defined as
functions of level j and position k
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Then the analyzing function ψ  becomes
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where ψ called mother wavelet and kj ,ψ  called daughter

wavelet. Here the level j determines how many wavelets are
needed to cover the mother wavelet, and the number k
determines the position of the wavelet and gives the indication
of time. It is possible to decompose any arbitrary signal x(t) into
its wavelet components. The approach is similar to the harmonic
analysis in Fourier transform except that, instead of breaking a
signal down into harmonic functions of different frequencies and
amplitudes, the signal is broken dawn into wavelets of different
scale (level), different positions and the corresponding
amplitudes of wavelets.

This can be put into a simpler explanation to stress the
similarity of approaches between the two transforms, as follows.
The Fourier transform breaks down a signal by frequency, and
the wavelet transform breaks down a signal into components of
different scales by comparing the signal to wavelets of different
sizes. In both cases, this is done by integration: multiplying the
signal by the analyzing function (sines and cosines or wavelets)
and integrating the product, Hubbard 1996 [9]. FT and WT are
both linear and square-integrable functions, derived from group
representation theory (from different groups). The essential
difference between the two is in the way the frequency (scaling)

parameter a is introduced in the analyzing function. In both
cases, b is simply a time translation.

If the analyzing function of short-time Fourier transform (STFT)
or Gabor transform, both of which involve Fourier transform, is
expressed in the similar way with the analyzing function of the
wavelet transform in Equation 2, it would be as follows,

)( )( btet atj
ab −= ψψ Eq. 6.

The relation between the two (STFT and WT) can be seen
clearly in Figure 1. Here ψ is a window (or analyzing) function
and the a-dependence is a modulation (1/a ~ frequency). Now,
how these transforms work can be understood easily: The
window in STFT has constant width, but the lower a, the larger
the number of oscillations in the window, Figure 1 (a). The
effect of a on the analyzing function ψ of WT is a dilation (a >1)
or a contraction (a <1). The shape of the function is unchanged,
it is simply spread out or squeezed, Figure 1 (b), Antoine 1996
[1]. This unique characteristics of analyzing a signal with an
adjustable window enables wavelet transform to detect small,
hidden or sudden changes more accurately.

Figure 1. Varying the scale parameter a in the case of the short-
time Fourier transform, (a); and the wavelet transform, (b).

2.1 Choice of Wavelet Families

In the wavelet analysis of signals, investigations on the matter of
“which wavelet to choose” have been in continuous progress.
This is because while a single algorithm (Fourier transform) is
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appropriate for all stationary signals, the transient signals are so
rich and complex that a single analysis method (whether of
time-scale or time-frequency) or one single type analyzing
wavelet cannot serve them all. This and following subsections
introduce several well-known wavelet families and their
characteristics briefly, and then outline the two main approaches
(continuous and discrete) to the wavelet computations in order
to justify the reason for preferring a particular type of WT for
effective and fast machinery vibration signal analysis. For
different wavelet applications to diagnostics refer to Engin et al.
1996 [5].

There are different types of wavelet families whose qualities
vary according to several criteria. For example, Figure 2 shows
the three analyzing wavelets used at three decreasing values of
scale with a shift parameter: Morlet wavelets (a), applied as
continuous wavelet transform; and Daubechies D4 & D20
wavelets (b,c), applied as discrete wavelet transform.

Figure 2. The Morlet wavelet (a), and Daubechies D4 and D20
wavelets (b, c) at three decreasing values of scale (a0 =1, a1 =½
and a2 =¼) with shift (k0 =0 and |k0 |< |k1| < |k2|).

The main criteria in choosing a family of wavelets are as
follows, Misiti et al. 1997 [11],

• The support of wavelet function ψ, scaling function φ, and
their Fourier transforms: the speed of convergence at
infinity to 0 of these functions when the time or the
frequency goes to infinity, which quantifies both time and
frequency localization.

• The symmetry, which is useful in avoiding dephasing in
image processing (which is out of the scope of present
study).

• The number of vanishing moments for ψ or for φ (if it
exists), which is related to reducing the polynomial degree
of time series being analyzed and is useful for compression
purpose.

• The regularity, which is useful for getting nice features like
smoothness of the reconstructed signal or image.

These are associated with two properties that allow fast
algorithm and space-saving coding:

• The existence of a scaling function φ.

• The orthogonality or the biorthogonality (when the
wavelets used in the deconstruction and reconstruction are
different) of the resulting analysis,

and perhaps less important ones:

• The existence of an explicit expression of φ (if exists) and
ψ.

• The ease of tabulating.

Daubechies wavelets constitute perhaps the most popular
wavelet family among the others. These wavelets have no
explicit expression except for D2, which is the simplest and
certainly the earliest wavelet introduced by Haar in 1911.
Several significant characteristics of Daubechies wavelets are as
follows,

• The support length of ψ and φ is 2N−1, where N is the
number of coefficients (e.g. for D4 this is 2·4−1 =3.)

• The number of vanishing moments of ψ is N, which is
significant for suppressing the details and highlighting the
remainder. Hence choosing a large N, for example D20,
will ensure Daubechies wavelets an effective feature
extraction tool.

• Most Daubechies wavelets (usually from D2 to D20) are
not symmetrical. For some, the asymmetry is very
pronounced. There is a trade off between the symmetry and
computation simplicity. D20 wavelets, however, are not
very far from symmetry and their computations are not
much more costly (in terms of time and computer storage)
than the other wavelets having smaller number of
coefficients. There are some other efforts on this subject
like Daubechies proposition of modifying her wavelets such
that their symmetry can be increased while retaining great
simplicity. For example, symlet wavelets as “near
symmetric” wavelets were developed. These wavelets have
very similar features that Daubechies wavelets have and do
not offer more advantages. Besides, symlets are only near
symmetric; consequently some authors do not call them
symlets. Symmetry, however, is not important in signal
processing; it is a concern in 2d data, i.e. in image
processing.

(a) (b) x(t)=ψ(t);

a0 = 1

 x(t)=ψ(2t− k1);
 a1 = ½

 x(t)=ψ(4t− k2);
 a2 = ¼
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• The analysis is orthogonal, which alleviates the
computation burden by allowing highly efficient algorithms
to be devised.

Another popular family is Morlet wavelets. Morlet wavelets can
be expressed explicitly as follows, Bentley and Grant 1995 [3],

ψ(t) = exp(jω0 t) exp(-t2/2) Eq. 7,

where ω0 is selected according to the frequency range of the
signal being analyzed. Alternatively, it can be expressed as,
Misiti et al. 1997 [11],

ψ(t) = C exp(-t/2) cos(5t) Eq. 8,

where the C constant is used for normalization in view of
reconstruction. Both expressions give the same shape of wavelet
function: a sinusoid windowed by a Gaussian function, as was
plotted in Figure 2 (a). The popularity of Morlet wavelets is
very much due to the direct connection between scale and
frequency. Morlet wavelets can be legitimately called a time-
frequency transform. In applications where it is desirable to
analyze the time-frequency nature of the signal the Morlet
wavelets are particularly useful. Being symmetrical, having an
explicit expression and providing an exact time-frequency
analysis make Morlet wavelets really useful. On the other hand
they suffer from several drawbacks such as absence of scaling
function φ and being not orthogonal so they cannot be computed
with fast algorithms. The other disadvantage is that they do not
give exact reconstruction when the inverse wavelet transform is
performed, Bentley and Grant 1995 [3].

There are some other wavelets in use such as Mexican hat
wavelets, two-humped wavelets, chirp wavelets, Meyer
wavelets, Battle-Lemarie wavelets and so on. These wavelets
have advantages and disadvantages compared to each other and
they present successful results according to the suitability of
purpose or applications. For example, two-humped wavelets
were used to detect chords in recorded music and chirp wavelets
were defined to improve description of heart sound signals
(refer to Grossmann and Martinet 1987 [8] and Bentley and
McDonnell 1994 [4], for the development of these wavelets).

2.2 Continuous vs. Discrete Wavelet Transform

Including machinery vibration signal any signal processing
performed on a computer must be discrete − that is it has been
measured at discrete time intervals. Therefore, the Continuous
Wavelet Transform (CWT) is also operating in discrete time.
What make CWT “continuous” and what distinguishes it from
Discrete Wavelet Transform (DWT) is the scales at which it
operates. Unlike the DWT, the CWT can perform at every scale
up to some maximum scale with minimum increment, which can
be determined by trading off the need for detailed analysis with
available computational horsepower. The CWT is also
continuous in terms of shifting: during computation, the
analyzing wavelet is shifted smoothly over the full domain of the
analyzed signal. Calculating wavelet coefficients at every
possible scale is a fair amount of work, and it generates an
awful lot of data, Misiti et al. 1997 [11]. It has been shown that
by choosing scales and positions based on powers of two (so-

called dyadic scales and positions) the analysis will be much
more efficient and just as accurate. Such an analysis is
performed by the discrete wavelet transform. A very efficient
way to implement this scheme using low-pass and high-pass
filters was developed by S. G. Mallat in 1988 (see Mallat 1989
[10]).

The discretized CWT yields magnitude and phase plots with n
samples along the time-shift axis (where n is the number of
samples in the analyzed signal) and j × m samples along the
scale axis (where j is referred to the number of octaves and m is
the number of voices per octave). In this form wavelet transform
exhibits a large degree of redundancy. The redundancy in scale
can be removed if a single analysis per octave is performed and
redundancy in the time-shift variable can be reduced to a
minimum by subsampling the signal after each octave analysis.
In conclusion, Daubechies orthogonal wavelets, which are
computed by Mallat’s tree algorithm (Fast Wavelet Transform),
make discrete wavelet analysis very much practicable. Together
with being a discrete WT, Daubechies wavelets also offer very
competitive feature extraction capabilities for vibration signal
analysis. They can provide compact input vectors with their
powerful feature extraction capabilities. Additionally,
Daubechies WT based mean-square wavelet maps show the
distribution of each wavelet coefficient to the particular level.
Hence, this type of wavelets has been considered to be the most
appropriate method in the analysis of rotating machinery
vibration signals.

3. THE DIAGNOSTICS METHODOLOGY
The feature extraction scheme proposed for the fault diagnostics
methodology here is based on calculating mean-square D20 WT
map of the vibration signal to introduce the characterizing mean-
square wavelet amplitudes of the critical levels to the ANNs.
The block diagram for the methodology is sketched in Figure 3.

Figure 3. Block diagram of the feature extraction scheme for
gear fault diagnosis.
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The diagram details the steps of the fault diagnosis methodology
as part of the established Condition Monitoring set-up, detailed
in Engin 1998 [7]. It combines the two types of fault
experiments; the impulsive (blip and shaved faults) and bending
fatigue failures. The classification results for example failures
are presented in the following subsections. As noted, the
performance of the scheme was tested with standard
backpropagation ANNs.

4. WAVELET APPLICATIONS

As was the case when introducing other signal processing
methods, the customary approach is followed, and the proposed
WT−ANN based fault diagnostics methodology was presented
with the numerically simulated data. For this purpose a simple
MATLAB

® program was coded to simulate vibration time signals
representing three different health states of a typical 36-tooth
spur gear. The resultant vibration signals representing the
reference, having fault-1 (similar to gear with one tooth giving a
“blip”) and fault-2 (similar to gear having a “shaved” tooth) are
displayed in Figure 4 (a-c), respectively.

Figure 4 Numerically simulated vibration signals; the reference
(a), first fault (b), and second fault (c).

All three kinds of signals carried an amplitude modulated main
sine and several other sine functions with higher frequencies
giving the meshing frequency and its first three harmonics. The
fault-1 and fault-2 were introduced as localized sine functions
(enveloped with fast decaying exponential components), i.e.
starting with a relatively high amplitude and ending with a very
low amplitude at around 205° and 210° of rotation angles. The
signal and seeded fault-1, fault-2 and the noise components of
the signal are plotted separately in Figure 5 (a-d), respectively.

While the first fault was designed to last 7 or 8 samples (giving
a sharp impulse), the second lasted around 15 samples
(simulating nearly half of a tooth was shaved), corresponding to
the duration of ~2.6 and ~5.2 degrees in Figure 5 (b) and (c),
respectively. The embedded faults are tried to be kept fairly

small (around half of the signal amplitude) to simulate the
conditions of developing failures realistically. Hence, as Figure
4 illustrates the variations between the signals are hardly
distinguishable by eye.

Figure 5. The reference signal (a), and Fault-1 (b), Fault-2 (c),
noise components (d).

40 copies of each health state (healthy, fault-1 and fault-2) were
taken and each was distorted by a random noise signal as shown
in Figure 5 (d). Then their D20 wavelet transform based mean-
square wavelet maps were computed for feature extraction. The
3d mean-square mesh diagrams of these maps (for the three
signals plotted in Figure 4 (a-c)) are presented in Figure 6 to
8, respectively.

Figure 6. Wavelet mean-square mesh diagram for the
numerically simulated reference vibration time signal given in
Figure 4 (a).
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Figure 7. Wavelet mean-square mesh diagram for the
numerically simulated fault-1 (similar to the blip fault) vibration
time signal given in Figure 4 (b).

Figure 8. Wavelet mean-square mesh diagram for the
numerically simulated fault-2 (similar to the shaved fault)
vibration time signal given in Figure 4 (c).

As was outlined in section 3, wavelet magnitudes distributed in
high levels detected the changes indicating the health of the
signal sufficiently. For this example, when the computed A
matrices (carrying the mean-square wavelet map information)
are studied it is seen that while levels 7 and 8 are mostly
indicative for fault-1, levels 8 and 9 are more indicative for
fault-2. This is due to the fact that the fault-1 involved lower
fault frequencies compared to the fault-2. Therefore, while
levels 7 and 8 are sufficient for fault-1, for fault-2 higher levels,
i.e. levels 8 and 9 seemed to be more descriptive. And only
several (about six) wavelet magnitudes in those levels reveal the
differences between the health patterns.

Consequently, the program produced a set, that is to be the
training file, containing 12 most energetic wavelets from levels
7 and 8 (each gave 6) computed for the reference and fault-1
signals, and from levels 8 and 9 (each gave 6) for fault-2 signal.
Each health state was represented with 30 feature vectors, of
which 10 were used for testing during the training. Another file
was obtained in the same way containing 10 different (unused)
vibration signal feature vectors for each state to be used in the
recall mode. After various experiments, the MLFF (multilayer
feed forward) neural network (trained with backpropagation
algorithm) having 12 input neurons, 6 hidden neurons and 2
output neurons (trained so that to return 0 0 for reference, 0 1
for fault-1, and 1 0 for fault-2) yielded a very high success rate
in classifying unmet 30 vibration signal features into healthy,
fault-1 and fault-2 states. The network parameters used are
presented in Table 1. The training error history is given in
Figure 9, which plots the rms error between the training set
targets and network outputs. The goal of backpropagation
training algorithm is to drive the error to a minimum value. The
plot shows that the rms error was dropped to under 0.01 within
10 000 iteration.

MLFF Network architecture

Transfer
function

No. of
inputs

Hidden
layer

No. of
outputs

Sigmoid 12 3 − 3 2

Training parameters

Max. iterations
Learning

rate
(min)

Learning
rate (max)

Momentum

10 000 0.001 0.30 0.80

Table 1. Network architecture and training parameters used in
the fault classification.

Figure 9. RMS error within the 10000 iteration.
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5. CONCLUSIONS

Artificial neural networks have emerged as a very beneficial
signal processing tool in many areas of application from pattern
recognition to control. There exist various types of neural
networks developed over the years. Among them multilayer feed
forward network trained with backpropagation algorithm has
been found as the most commonly used one. It is a self-adapting
algorithm, that is, it learns a problem with examples then
recognizes patterns, trends and hidden relationships within the
similar problems represented by data with huge amount and
complexity. A principled establishment methodology and an
effective pre-processing scheme are two most important
requirements for successful applications of neural networks. The
experiments carried out on numerically and experimentally
simulated data indicate that a well designed and trained neural
network have the potential to estimate the condition of a rotating
machinery component effectively by inspecting the encoded (in
this case pre-processed with a D20 WT based feature extraction
scheme) data of a single revolution of the component. This pre-
processing has made the network’s input vectors much more
compact and hence easy to establish the relations between them,
which leads to fast and effective signal classification.

Although the introduced spur gear localized tooth defects were
reasonably realistic, the proposed automated Condition
Monitoring and Fault diagnostics (CM/FD) methodology should
be tested with the data acquired in real industrial conditions.
Once similar good results obtained from these experiments, the
methodology could be established as a part of an integrated on-
line CM system, possibly devised with DSP based hardware
operating with comprehensive and user-friendly software. As the
literature indicates the wavelet transforms have already been
implemented on DSPs. Consequently, ANNs fed by the
proposed D20 WT based feature extraction scheme, which leads
to a tremendously short training/classification time, could be
perfectly used in on-line or real-time CM applications to avoid
costly breakdowns.
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