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Abstract - This paper investigates a robust signal detection
scheme for the uplink communication in radio frequency identi-
fication systems. An optimum maximum-likelihood sequence de-
tector (MLSD) scheme and a sub-optimum sliding correlationde-
tection scheme are proposed for differential bi-phase codes. The
MLSD scheme has3 dB performance improvement w.r.t. the sin-
gle symbol ML detector. However, these algorithms are not robust
to symbol timing errors, and the performance decreases fastal-
ready for few error samples. The robustness to timing errorscan
be significantly improved by a sub-optimum scheme performing
one or more symbols sliding correlation detection.

I. INTRODUCTION

In the recent years, there has been a growing interest in the develop-
ment of communication systems for the identification and localization
of objects [1]. Radio frequency identification (RFID) systems use ra-
dio frequency to identify, locate, and track people, objects, and ani-
mals [2].

An RFID system consists of readers and tags (or transponders),
and depending on the operation mode, it can operate at different fre-
quency bands. The tag, which is the data carrying device, canbe active
or passive, i.e., with or without an internal power source, and with a
read-only or read-and-write memory. Identification systems operating
at low frequencies, e.g., 125 KHz or 13.56 MHz, work by using the
Faraday’s principle of magnetic induction, and are limitedin distance
for physical reasons. Inductive coupling is only possible in the near-
field of the reader antenna, where tags send data back to the reader
using load modulation [2]. At higher frequencies, e.g., 900MHz or
2.4 GHz, tags based on far-field emissions capture electromagnetic
waves and transmit data using the backscattering principle[3]. In gen-
eral, microwave passive or active backscatter tagging systems have a
larger transmission distance than inductive systems. The choice of the
operating frequency depends on the system’s environment and require-
ments.

The performance of an RFID system is highly application depen-
dent, i.e., tag-reader designs look different for different target applica-
tions. Depending on various parameters, like e.g. the environment, the
operating frequency, the antenna size and shape, the signalbandwidth,
and the signal-to-noise ratio (SNR), the performance of thesystem
can change. Important aspects for measuring the performance are the
maximum reading range and the identification time. The performance
of RFID tags, for both near- and far-field has been discussed in [4].
Fundamental constraints limiting the performance of a system oper-
ating at different frequencies using passive tags have beenpresented
in [5,6]. In [7], the propagation effects for UHF passive RFID systems
have been analyzed. Some works addressing the multiple tag identifi-
cation problem have been proposed in [8,9]. In the uplink (from tag to
reader), conditions and requirements are somewhat different from the
downlink (from reader to tag), and depending on the implementation,
amplitude or phase are varied. Special coding schemes are used to en-
sure a continuous power supply to the tag, like e.g. Manchester, Miller
or differential bi-phase (DBP) [2]. At the reader side, the received
signal data levels are very low due to the low energy coding scheme,
and sometimes the signal detection becomes a difficult task.None of
the above contributions take into account the encoding and decoding
schemes but rather consider “physical” limitations.

In this paper, we investigate a robust signal detection scheme
for the uplink in passive RFID systems. Compared to the standard
symbol-by-symbol detection, the proposed scheme is robustto symbol
timing errors which is a limiting performance factor. This approach
is useful for digital signal processing (DSP)-based RFID readers op-
erating in the near- or far-field. The rest of the paper is organized
as follows. In Sect. II., we describe the operation principle of the
backscatter modulation in RFID systems. Basic and advanceddetec-
tion schemes are derived in Sect. III.. Numerical results characterizing
the performance gains are presented in Sect. IV., and conclusions are
drawn in Sect. V..

II. SYSTEM DESCRIPTION
We consider the backscattered RFID transmission set-up sketched
in Fig. 1. The reader starts to emit a continuous RF carrier wave

xC(t) = Re
h

ACej2πfCt
i

,

whereRe[·] denotes the real operator, andAC andfC denote the am-
plitude and the frequency of the carrier, respectively. When a passive
tag enters the RF field of the reader and has received enough energy,
the incident waves are backscatter modulated by the data signal
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where{Sn} is the coded symbol sequence,NS is the number of sym-
bols to be transmitted,TS is the duration of a symbol, and the signal
pulsep(·) is defined by
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1 if − TS/2 ≤ t ≤ TS/2,
0 otherwise.

Thus, the backscatter modulated signal can written as

xBS(t) = Re
h

m̃(s(t))ej(2πfCt+2φ)
i

,

where2φ = 2 2π
λ

D is the phase delay,λ is the wavelength,D is
the distance between the reader and the tag, andm̃(s(t)) denotes the
modulation index of the backscattering cross-section. In general, an
analytical expression of this modulation index is difficultto obtain.
In the following, the knowledge of an exact expression ofm̃(·) is of
minor importance, and therefore,̃m(·) is replaced by the modulation
index m of the modulating data signal. The backscatter modulated
signal can be approximated by

xBS(t) ≈ Re
h

ABSms(t)ej(2πfCt+2φ)
i

,

with m = σmax−σmin

σmax+σmin
, where the termsσmax andσmin refer to the

maximum and minimum backscattering cross-sections [10]. After a
low-noise amplifier (LNA), a down-conversion with conversion factor
K′ is performed yielding

xBB(t) = K′ms(t)cos(2φ).

Homodyne detection of a double sideband modulated signal causes
however an undesired phase difference2φ, which may lead to the can-
cellation of the demodulated signal. We assume that the baseband sig-
nal xBB(t) is not cancel out by this phase difference, and for a given
λ andD, the down-converted signal embedded in noise is given by

y(t) = xBB(t) + ω(t) = Ks(t) + ω(t),
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FIGURE 1 - RFID SYSTEM USING BACKSCATTERING MODULATION.

with K = K′mcos(2φ). The noise signalω(t) is modelled as zero-
mean additive white Gaussian noise (AWGN) process withE[ω(t +
τ )ω(t)] = N0

2
δ(τ ), where N0

2
denotes the noise power spectral den-

sity. The received signal is passed through an analog-to-digital (A/D)
converter, whose output sequence{y(ν)}, consisting of samples

y(ν) = Ks(ν) + ω(ν), ν = 1, . . . , NNS ,

is the received signaly(t) sampled at time instantst = ν TS

N
, where

N is the number of samples/coded symbol and the discrete AWGN is
assumed to be statistically independent, Gaussian distributed random
variable with zero-mean and equal varianceN0

2
. Thus, the signal is

fed to the DSP which detects and decodes the data signal.

III. D ETECTION SCHEMES
We assume a coherent communication system, and investigatediffer-
ent detection schemes for DBP codes. In a similar way, these schemes
could be also derived for other codes like e.g. Miller codes.In the
DBP encoding scheme, a “0” is coded by a transition in the halfbit
period, and a “1” is coded by a lack of a transition. Since at the start of
every symbol the level is inverted, for then-th symbol, we have two
possible “0” waveforms, i.e.,

S1
n =



−1 0 ≤ t ≤ TS/2
1 TS/2 < t ≤ TS

or S2
n = −S1

n,

and two possible “1” waveforms, i.e.,

S3
n = −1 0 ≤ t ≤ TS or S4

n = −S3
n,

where the “0” waveforms are orthogonal to the “1” waveforms.Here,
a coded symbol depends only on the coded symbol of the previous
interval, and the sequence of symbols{Sn} = {Sk

n}, for a given se-
quence of indicesk∈{1, . . . , 4}, is a first-order Markov process.

This process is completely described by the transition matrix P n,
in which an elementpji =p(j|i) equals the conditional probability of
the symbolj occuring after a given symboli has occured. For DBP
codes, this matrix is given by

P n =
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3.1 Symbol-by-Symbol Detection
Let Sk, k=1, . . . , 4, be the vectors containing theN sampled values
of the waveforms “0” and “1”. As a consequence of the properties of
the AWGN processω(ν), the correlation outputs

Rk
n =
D

[y(1+N(n−1)), . . . , y(Nn)] , Sk
E

, ∀k, n, (1)

represent a sufficient statistic for the estimation problem[11], where
〈a,b〉 denotes the inner product of two vectorsa and b. Using a
maximum-likelihood (ML) detector we have

Ŝn = argmax
k

Rk
n, ∀n.

Consider the signal space of a DBP encoding scheme (Fig. 2) inwhich
the four possible points areS1

n =S3
n =−S2

n =−S4
n =

√
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is the energy per bit.
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FIGURE 2 - SIGNAL SPACE FORDBP SIGNALS.

To derive analytically a closed-form expression of the bit-error
probability (BEP), we assume thatS1

n was transmitted, and we inves-
tigate the symbol-error probability (SEP)P

`

error|S1
n

´

which equals
to the BEPPb,ML. Since “0” symbols are orthogonal to “1” symbols
we have
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whereQ(x) is theQ-function [11]. Since DBP signals have memory,
i.e., symbols transmitted in successive intervals arenot independent,
the above ML detection scheme is not optimum. Utilizing the fact that
only certain sequence of symbols are allowed, the detectionscheme
can be enhanced.

We propose a ML sequence detector (MLSD) scheme which is
computed in two steps:

Trace forward step: First, the correlation values in each signal
interval for the four waveforms are calculated using (1), and are stored
in a data structure called trellis (Fig. 3), where the transitions between
symbols are described by the matrixP n. Second, the best preceding
symbol, i.e., the one which is possible and has the highest correlation

2
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FIGURE 3 - TRELLIS USED IN THEMLSD OF DBP CODES.

value is determined for allk andn>2, and the new correlation values
are computed according to

R̃1
n = R1

n + max{R1
n−1, R

4
n−1},

R̃2
n = R2

n + max{R2
n−1, R

3
n−1},

R̃3
n = R3

n + max{R1
n−1, R

4
n−1},

R̃4
n = R4

n + max{R2
n−1, R

3
n−1},

and stored in the trellis.
Trace back step:The bit stream is assembled by iterating trough

the trellis starting from the end. We start by choosing the resulting
highest correlation value, and we use the trellis created inthe forward
step for always choosing the best predecessor.

If the DBP encoding scheme is represented by a recursive encoder
with rateRc =1/2 where “0” and “1” are coded to two antipodal half
waveforms, the minimum Hamming distance of the code isdmin =2.
Thus, at high SNR, the asymptotic BEP can be approximated by

Q
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≤ Pb,MLSD. (2)

In Sect. IV., it is shown that the derived lower bound is closeto numer-
ical results (at highEb

N0
), and the MLSD scheme performs3 dB better

than the ML detector.
However, these schemes are very sensitive to symbol timing er-

rors, and the system performance can decrease quickly as it is shown
in the simulation results. The robustness to timing errors can be sig-
nificantly improved by a sub-optimum scheme performing a symbol
sliding correlation detection.

3.2 Sliding Detection
We consider the received signal zero padded to lengthNNS +N−1
given by

ỹ = [ỹ(1), . . . , ỹ(NNS +N−1)] ,

= [0, . . . , 0, y(1), . . . , y(NNS)].

The correlations are calculated by sliding the received signal and com-
puting the correlations at each sample shiftν with the different wave-
forms, i.e.,

Rk
n(ν) =

D

[ỹ(ν), . . . , ỹ(ν+N−1)] , Sk
E

, ∀ν.

Thus, the ML detector makes a decision in each signal interval of
lengthN according to

Ŝn = arg max
k

ν∈{1+N(n−1),...,Nn}

{Rk
n(ν)}, ∀n.

The MLSD scheme is similar to the one described above. In this
case, during the trace forward step the maximum correlationvalues in
each symbol interval are calculated by

Rk
n = max

ν∈{1+N(n−1),...,Nn}
{Rk

n(ν)}, ∀k, n,

and stored in the trellis. The rest of the algorithm is the same as the
one in Sect. 3.1.

The sub-optimum sliding detection scheme can be improved
in two ways. First, the analysis can be extended by consid-
ering two (or more) symbols in the sliding correlations, i.e.,
S

1
S

1, S1
S

3, S3
S

1, S3
S

3 andS
2
S

2, S2
S

4, S4
S

2, S4
S

4, and as it
is shown in Sect. IV., the system performance is improved. However,
for increasing the number of symbols, the complexity of the correlator
increases exponentially. A few more effort on synchronization will de-
crease the timing errors and then reduce the complexity for the sliding
detection scheme. Second, the nature of DBP codes would suggest to
use the known half-bit before and after each waveform to improve the
performance of the correlation.

IV. SIMULATION RESULTS

In the simulation results, we validate the analysis and investigate the
achievable performance gains resulting from the presenteddetection
schemes. We consider an RFID system withN = 32 andNS = 128,
employing DBP codes in the uplink communication, where the data
transmitted by the tag is randomly generated.

The achievable performance gains resulting from the schemes in
Sect. III. can be seen in Fig. 4 for different symbol correlations. The
figure displays the bit-error rate (BER) at the decoder output as a func-
tion of the received SNR. In addition, the derived analytical expres-
sions are also shown in the same figure.
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Note that the BER curves using the MLSD show a larger slope for
increasing SNR values than using the ML detector. As expected, for
1-symbol correlation, the scheme in Sect. 3.1 outperforms the scheme
in Sect. 3.2, where the best performance is given by the symbol-by-
symbol correlation with MLSD.

Using more symbols in the sliding detection scheme we approach
the lower bound in (2), where the 2-symbols sliding correlation with
MLSD is already better thanPb,ML. However, the relative gain be-
tween MLSD and ML decreases for increasing the number of used
symbols in the correlation.

In Fig. 5, the performance of the system in terms of BER (Fig. 4) is
translated in number of corrected decoded data signals. Thefigure dis-
plays the percentage of received signals that can be decodedwithout
errors. The figure shows that at7.5 dB, it is already possible to cor-
rectly decode95% of the received signals using the symbol-by-symbol
correlation with MLSD scheme,80% using the 2-symbols sliding cor-
relation with MLSD, and only10% using both 1-symbol correlation
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with ML schemes. Further improvements are to be expected from an
additional error detection and correction scheme at the expense of an
higher complexity.

The influence of symbol timing errors is examined in Fig. 6 for
the schemes in Sect. III. atEb/N0 = 7 dB. The figure shows the BER
degradation as a function of the timing error∆S expressed in number
of shift samples, where∆S = 0 implies perfect symbol synchroniza-
tion.

We can see that the symbol-by-symbol detection schemes are very
sensible to timing errors. For|∆S|=1, the symbol-by-symbol corre-
lation with MLSD has the same performance than the 2-symbolsslid-
ing correlation with MLSD, and for|∆S |>1 the best performance is
given by the sliding scheme.

It turns out that using sliding detection schemes, the system is ro-
bust to timing errors, and we observe a constant average BER for at
least|∆S | ≤ 10. Correlation schemes using 2-symbols are more ro-
bust than correlations using only 1-symbol, and with MLSD wearrive
to support timing errors up to|∆S |=14 maintaining a constant BER.
For ∆S > N/2−1 and∆S <−N/2, the performance gain is signif-
icantly smaller since some maximum correlation values are shifted in
the next time slot destroying the signal detection.

V. CONCLUSIONS
A robust signal detection scheme with moderate complexity minimiz-
ing the BER in RFID systems has been derived. The symbol-by-
symbol correlation with MLSD improves the system performance by
3 dB w.r.t. conventional ML detectors. The increased slope of the
BER makes the MLSD scheme attractive in RFID systems where the
power is limited. However, these schemes are not robust to sym-
bol timing errors and the 2-symbols sliding correlation with MLSD
scheme has the best performance already for few error samples. This
approach leads to often desired asymmetry in complexity, with so-
phisticated signal processing hardware in the reader, and cheap data
processing in the tag.

The proposed scheme is robust to symbol synchronization errors,
and it is suited for improving the reading distance and signal detec-
tion in a possible combination with an error detection and correction
scheme.
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