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Abstract - This paper investigates a robust signal detection

scheme for the uplink communication in radio frequency iderti-
fication systems. An optimum maximume-likelihood sequence et
tector (MLSD) scheme and a sub-optimum sliding correlationde-
tection scheme are proposed for differential bi-phase code The
MLSD scheme has3 dB performance improvement w.r.t. the sin-
gle symbol ML detector. However, these algorithms are not rbust
to symbol timing errors, and the performance decreases fasil-
ready for few error samples. The robustness to timing errorscan
be significantly improved by a sub-optimum scheme performig
one or more symbols sliding correlation detection.

. INTRODUCTION

In the recent years, there has been a growing interest ineelap-
ment of communication systems for the identification andliaation
of objects [1]. Radio frequency identification (RFID) systeuse ra-
dio frequency to identify, locate, and track people, olgeand ani-
mals [2].

An RFID system consists of readers and tags (or transponder,

and depending on the operation mode, it can operate atefitfére-

guency bands. The tag, which is the data carrying deviceheaative
or passive, i.e., with or without an internal power sourae] with a
read-only or read-and-write memory. Identification systeiperating

at low frequencies, e.g., 125 KHz or 13.56 MHz, work by usihg t

Faraday’s principle of magnetic induction, and are limitedistance
for physical reasons. Inductive coupling is only possibl¢hie near-

In this paper, we investigate a robust signal detection mehe
for the uplink in passive RFID systems. Compared to the stahd
symbol-by-symbol detection, the proposed scheme is rabsgimbol
timing errors which is a limiting performance factor. Thigpaoach
is useful for digital signal processing (DSP)-based RFI&dess op-
erating in the near- or far-field. The rest of the paper is izl
as follows. In Sect. Il., we describe the operation prireipf the
backscatter modulation in RFID systems. Basic and advadetst-
tion schemes are derived in Sect. lll.. Numerical resulis&tterizing
the performance gains are presented in Sect. IV., and csinokiare
drawn in Sect. V..

[I. SYSTEM DESCRIPTION
We consider the backscattered RFID transmission set-ufchee
in Fig. 1. The reader starts to emit a continuous RF carrieewa

zc(t) = Re [Acej%fct] ,

whereRe]-] denotes the real operator, add: and fc denote the am-

eplltude and the frequency of the carrier, respectively. Wag@assive

tag enters the RF field of the reader and has received eno@gbyen
the incident waves are backscatter modulated by the datalsig

ZS ( nTs/2)7

n=1

where{S,} is the coded symbol sequendég is the number of sym-
bols to be transmitted[s is the duration of a symbol, and the signal

field of the reader antenna, where tags send data back todterrepulsep(-) is defined by

using load modulation [2]. At higher frequencies, e.g., 808z or
2.4 GHz, tags based on far-field emissions capture electoetia
waves and transmit data using the backscattering prinf3plén gen-

if — Ts/Q <t< Ts/Q,
otherwise.

(7)== () ={ o

eral, microwave passive or active backscatter taggingsyshave a Thus, the backscatter modulated signal can written as

larger transmission distance than inductive systems. fbiee of the
operating frequency depends on the system’s environmenteaguire-
ments.

zps(t) = Re[ (s(t))e? Bmiot+29)

where2¢ = 22ZD is the phase delay) is the wavelengthD is

The performance of an RFID system is highly application depene distance between the reader and the tagsiafdt)) denotes the

dent, i.e., tag-reader designs look different for difféitanget applica-
tions. Depending on various parameters, like e.g. the emvient, the
operating frequency, the antenna size and shape, the bigmdvidth,
and the signal-to-noise ratio (SNR), the performance ofsystem
can change. Important aspects for measuring the perfoerenecthe
maximum reading range and the identification time. The perémce
of RFID tags, for both near- and far-field has been discussdd]i

Fundamental constraints limiting the performance of aesysbper-
ating at different frequencies using passive tags have pezsented
in [5,6]. In [7], the propagation effects for UHF passive RRlystems
have been analyzed. Some works addressing the multipleeagjfi-

cation problem have been proposed in [8,9]. In the uplindn(ftag to
reader), conditions and requirements are somewhat différ@m the
downlink (from reader to tag), and depending on the impleatémn,

amplitude or phase are varied. Special coding schemes eddasn-
sure a continuous power supply to the tag, like e.g. Manehgiller

or differential bi-phase (DBP) [2]. At the reader side, tleeeaived
signal data levels are very low due to the low energy coditgse,
and sometimes the signal detection becomes a difficult tdeke of
the above contributions take into account the encoding @cdding
schemes but rather consider “physical” limitations.

modulation index of the backscattering cross-section. einegal, an
analytical expression of this modulation index is diffictdtobtain.
In the following, the knowledge of an exact expressionidf) is of
minor importance, and thereforéy(-) is replaced by the modulation
index m of the modulating data signal.
signal can be approximated by

zps(t) ~ Re [ABsms(t)ej@”fCHw)] ,

with m = % where the terms 4, ando ..., refer to the
max

maximum and minimum backscattering cross-sections [1Gterfa

low-noise amplifier (LNA), a down-conversion with convensifactor

K' is performed yielding
K'ms(t)cos(2¢).

Homodyne detection of a double sideband modulated signelesa
however an undesired phase differedgewhich may lead to the can-
cellation of the demodulated signal. We assume that thebbaslesig-

l'BB(t) =

nal zgg(t) is not cancel out by this phase difference, and for a given

A andD, the down-converted signal embedded in noise is given by
y(t) = zB(t) + w(t) = Ks(t) + w(t),

The backscatter modulated
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FIGURE1 - RFID SYSTEM USING BACKSCATTERING MODULATION

with K = K'mcos(2¢). The noise signal(t) is modelled as zero- Consider the signal space of a DBP encoding scheme (Figv@®itth
mean additive white Gaussian noise (AWGN) process With(t + the four possible points arg: = S3 = —S2 = — S = /E,, whereE,
T)w(t)] = £2§(7), where 2 denotes the noise power spectral deris the energy per bit.

sity. The received signal is passed through an analoggitatl{A/D)

converter, whose output sequergg )}, consisting of samples y

y(v) =Ks(v)+w(v), v=1,...,NNg, \\\SZ"/
is the received signaj(t) sampled at time instants= v 1<, where s N
N is the number of samples/coded symbol and the discrete AVSGN i Sn N
assumed to be statistically independent, Gaussian distdlrandom y
variable with zero-mean and equal variarfé@. Thus, the signal is Vs
fed to the DSP which detects and decodes the data signal. /‘S;‘z £ IR

[1I. DETECTION SCHEMES

We assume a coherent communication system, and investiifete

ent detection schemes for DBP codes. In a similar way, thesnses FIGURE 2 - SIGNAL SPACE FORDBP SIGNALS.
could be also derived for other codes like e.g. Miller codesthe

DBP encoding scheme, a “0” is coded by a transition in the bialf

period, and a “1” is coded by a lack of a transition. Since afstfart of To derive analytically a closed-form expression of thedsibr
every symbol the level is inverted, for theth symbol, we have two probability (BEP), we assume th&f was transmitted, and we inves-
possible “0” waveforms, i.e., tigate the symbol-error probability (SEP) (error|S,,) which equals
g 1 0<t<Ts/2 ¢ _ g to the BEPP;, mr.. Since “0” symbols are orthogonal to “1” symbols
n 1 TS/2 < t S TS or n ny we haVe
and two possible “1” waveforms, i.e., P (error|S1) = P <d1 . \/2Eb) P <d2 - \/2Eb>
S3—=_1 0<t<Ts or St=-53 2 2
where the “0” waveforms are orthogonal to the “1” waveforidsre, +P (d2 > 2TE") P (d1 < 2TE") .
a coded symbol depends only on the coded symbol of the previou
interval, and the sequence of symb@ls,, } = {Sk}, for a given se- \jith
quence of indices € {1, ..., 4}, is a first-order Markov process.
This process is completely described by the transitionimd,, , 1 2E, 1 E,
in which an elemenp;; = p(j|i) equals the conditional probability of di = d; VNoJ2 2 2 VN =12
. . J . . N0/2 N0/2 0
the symbolj occuring after a given symbalhas occured. For DBP
codes, this matrix is given by we can write
Psisl Psis2 Psls3 Pslsa 05 0 0 05
p _|Pszst Pszsz Pszsi Pszsi|_| 0 0505 0 P (error|S,,) =2Q (1 / &> 1-Q (,/ &> = Py ML,
" Ps3sl Ps3s2 Ps3s3 Ps3s4 05 0 0 05 No No
Ps4gl Pgag2 Pgig3 Pgig4h 0 0505 O
roToonen e e whereQ(z) is theQ-function [11]. Since DBP signals have memory,
3.1 Symbol-by-Symbol Detection i.e., symbols transmitted in successive intervalsrareindependent,
LetS*, k=1,...,4, be the vectors containing thé sampled values the above ML detection scheme is not optimum. Utilizing thet that
of the waveforms “0” and “1". As a consequence of the propertif only certain sequence of symbols are allowed, the detestibeme
the AWGN process(v), the correlation outputs can be enhanced.

We propose a ML sequence detector (MLSD) scheme which is
k k
R, = <[y(1+N(n—1)), .., y(Nn)], S > , Vk,n, (1) computed in two steps:

represent a sufficient statistic for the estimation probjef), where  1race forward step: First, the correlation values in each signal
(a,b) denotes the inner product of two vectersand b. Using a interval for the four waveforms are calculated using (1} are stored
maximum-likelinood (ML) detector we have in a data structure called trellis (Fig. 3), where the trémiss between

. . symbols are described by the mat#,. Second, the best preceding
Sn = argmax R, Vn. symbol, i.e., the one which is possible and has the highestlation
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FIGURE3 - TRELLISUSED IN THEMLSD oF DBP CcODEs

and stored in the trellis. The rest of the algorithm is the sas the
one in Sect. 3.1.

The sub-optimum sliding detection scheme can be improved
in two ways. First, the analysis can be extended by consid-
ering two (or more) symbols in the sliding correlations, .,i.e
S'st §'s® §38' §35%andsS?s?, 8284 867 §*8*, andasit
is shown in Sect. IV., the system performance is improvedvéler,
for increasing the number of symbols, the complexity of thealator
increases exponentially. A few more effort on synchromirawill de-
crease the timing errors and then reduce the complexityhéosliding
detection scheme. Second, the nature of DBP codes woulestigy
use the known half-bit before and after each waveform to avpthe
performance of the correlation.

value is determined for alt andn > 2, and the new correlation values

are computed according to

Ry = R} +max{R._1,Ra_1},
Ry, = Ry + max{R;_;,R,_1},
R;, = R, + max{R,_1, Ry_1},
Ri = R: +max{R>_,,R3_.},

and stored in the trellis.

IV. SIMULATION RESULTS

In the simulation results, we validate the analysis andstigate the
achievable performance gains resulting from the presemhgetction
schemes. We consider an RFID system with= 32 and Ns = 128,
employing DBP codes in the uplink communication, where tatad
transmitted by the tag is randomly generated.

The achievable performance gains resulting from the schéme
Sect. lll. can be seen in Fig. 4 for different symbol corrielas. The
figure displays the bit-error rate (BER) at the decoder dwdpa func-

Trace back step: The bit stream is assembled by iterating trougtion of the received SNR. In addition, the derived analyteeres-

the trellis starting from the end. We start by choosing thaulteng
highest correlation value, and we use the trellis createddrdorward
step for always choosing the best predecessor.

If the DBP encoding scheme is represented by a recursivelencc
with rate R. =1/2 where “0” and “1” are coded to two antipodal hal

waveforms, the minimum Hamming distance of the codé.is, = 2.
Thus, at high SNR, the asymptotic BEP can be approximated by

/ B,
Q< 2dminfzc FO) — Q (

In Sect. IV, it is shown that the derived lower bound is clwspumer-
ical results (at high%), and the MLSD scheme perforn3sdB better
than the ML detector.

However, these schemes are very sensitive to symbol tinting
rors, and the system performance can decrease quicklysashibivn
in the simulation results. The robustness to timing errars lze sig-
nificantly improved by a sub-optimum scheme performing atsyim
sliding correlation detection.

2Ey,

< P . 2
No ) < I'b,MLSD )

3.2 Sliding Detection

We consider the received signal zero padded to ledgiis + N —1
given by

[0,...,0,y(1),...,y(NNg)].

The correlations are calculated by sliding the receivedaignd com-

puting the correlations at each sample shiftith the different wave-
forms, i.e.,

Riw) = (i), ..,

Thus, the ML detector makes a decision in each signal intexfva
length N according to

y

Gv+N-1)] ,s’“>, V.

Sn = arg {Rn(n)},
ve{l+N(n—1),...,Nn}

Vn.

max
k

sions are also shown in the same figure.
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FIGURE 4 - AVERAGE BERS APPLYING SYMBOL-BY-SYMBOL
AND SLIDING DETECTIONS.

Note that the BER curves using the MLSD show a larger slope for
increasing SNR values than using the ML detector. As expeéte
1-symbol correlation, the scheme in Sect. 3.1 outperfolastheme
in Sect. 3.2, where the best performance is given by the simbo
symbol correlation with MLSD.

Using more symbols in the sliding detection scheme we agproa
the lower bound in (2), where the 2-symbols sliding corietatvith
MLSD is already better tha#, v, However, the relative gain be-
tween MLSD and ML decreases for increasing the number of used
symbols in the correlation.

In Fig. 5, the performance of the system in terms of BER (Figs 4
translated in number of corrected decoded data signalsfigire dis-

The MLSD scheme is similar to the one described above. In thigys the percentage of received signals that can be deasuitieniit

case, during the trace forward step the maximum correlagdues in
each symbol interval are calculated by

RF = }{Rﬁ(u)}, vk, n,

max
ve{l+N(n—-1),...,N

errors. The figure shows that @t5 dB, it is already possible to cor-
rectly decod®5% of the received signals using the symbol-by-symbol
correlation with MLSD scheme0% using the 2-symbols sliding cor-
relation with MLSD, and onlyl0% using both 1-symbol correlation
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FIGURE5 - PERCENTAGE OF DECODED DATA SIGNALS WITHOUT
ERRORS APPLYING SYMBOLBY-SYMBOL AND SLIDING
DETECTIONS

with ML schemes. Further improvements are to be expected &o

additional error detection and correction scheme at therese of an

higher complexity.

The influence of symbol timing errors is examined in Fig. 6 for
the schemes in Sect. lll. &, /No = 7 dB. The figure shows the BER
degradation as a function of the timing erthg expressed in number
of shift samples, wheré s = 0 implies perfect symbol synchroniza-

tion.
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FIGURE 6 - AVERAGE BERS AT 7dB APPLYING

SYMBOL-BY-SYMBOL AND SLIDING DETECTIONS AS A FUNCTION

OF THE TIME SAMPLE ERRORS
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[2] K. Finkenzeller,RFID Handbook. UK: John Wiley and Sons,

2nd ed., 2003.

[3] M. Kossel, H. R. Benedickter, R. Peter, and W. Bachtoldj-*

crowave backscatter modulation systems,1lBEE MTT-S Di-
gest, vol. 3, (Boston, MA), pp. 1427-1430, Jun 2000.

We can see that the symbol-by-symbol detection scheme®BIe Va1 j | M. Flores. S. S. Srikant. B. Sareen. and A. Vaggayftre

sensible to timing errors. FdAs| =1, the symbol-by-symbol corre-

lation with MLSD has the same performance than the 2-syndils

ing correlation with MLSD, and fofA 5| > 1 the best performance is

given by the sliding scheme.
It turns out that using sliding detection schemes, the sysao-

bust to timing errors, and we observe a constant average BER f
least|As| < 10. Correlation schemes using 2-symbols are more ro-

bust than correlations using only 1-symbol, and with MLSDameve

mance of RFID tags in near and far field,” iREE Int. Conf.
on Personal Wireless Commun. (ICPWC) '05, (New Delhi),
pp. 353-357, Jan. 2005.

[5] P.Cole, D. Hall, M. Loukine, and C. Werner, “Fundamertah-

straints on RFID tagging systemghird Annual Wireless Sym-
posium, pp. 294-303, Feb 1995.

to support timing errors up ta\ s| = 14 maintaining a constant BER. [6] P- V. Nikitin and K. V. S. Rao, “Performance limitations pas-

ForAs > N/2—1 andAgs < —N/2, the performance gain is signif-

icantly smaller since some maximum correlation values hiféesl in
the next time slot destroying the signal detection.

V. CONCLUSIONS
A robust signal detection scheme with moderate complexitymiz-

ing the BER in RFID systems has been derived. The symbol-by-

symbol correlation with MLSD improves the system perforceaby

3dB w.r.t. conventional ML detectors. The increased slope ef th
BER makes the MLSD scheme attractive in RFID systems where th
power is limited. However, these schemes are not robust o sy

bol timing errors and the 2-symbols sliding correlationhMILSD
scheme has the best performance already for few error sanipiés
approach leads to often desired asymmetry in complexitth wo-

phisticated signal processing hardware in the reader, hedpcdata

processing in the tag.

The proposed scheme is robust to symbol synchronizatiamserr

and it is suited for improving the reading distance and digetec-
tion in a possible combination with an error detection andemion
scheme.
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