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Abstract—Array forming in seismic data acquisition can be
likened to FIR filtering. Misplacement of the receivers used to
record seismic waves can lead to degraded performance with
respect to the filtering characteristics of the array. We propose
two methods for generating linear space-varying filters that
take receiver misplacements into account and demonstrate their
performance on synthetic data.

I. INTRODUCTION

Variations in the sampling interval when sampling a signal
are often difficult or impossible to prevent. This might make
processing the sampled signal problematic, if the related tools
can only handle uniformly sampled signals. The motivation
for our work comes from the field of seismic data acquisition.
A very common practice in this field, is to sum together
the (possibly weighted) output signal of multiple seismic
receivers. This process is known as array forming and is used
to improve the signal-to-noise ratio and to reduce the amount
of recorded data.

Being a weighted summation of the output of a finite
number of receivers, array forming can be likened to FIR
filtering. More specifically, we can view array forming as the
application of a linear space-invariant (LSI) filter, since usually
the same set of weights is used for the array elements of all
arrays in a field.

A problem arises, however, when the receivers are mis-
placed due to e.g., terrain difficulties. Usually the array
weights are designed for a specific geometrical layout of
the array elements. When this geometrical layout is violated,
it can prove detrimental for the filtering capabilities of the
array, as shown in [1]. Fortunately, advances in acquisition
hardware have enabled us a) to record the output of each
individual receiver and b) to know with high (but limited)
accuracy the actual location of each receiver. This makes more
sophisticated techniques viable for array forming/filtering that
can compensate for irregularities in sampling.

A number of solutions have been suggested for the problem
of array forming/filtering nonuniformly sampled data, which
can be roughly divided in three categories. Methods of the
first category interpolate an FIR filter that is designed to filter
uniformly sampled data. We shall call this FIR filter the pro-
totype filter. An example is given in [2], where the prototype

filter is interpolated to the actual locations of the receivers.
These interpolated filter coefficients (or equivalently, the array
weights) are then reweighted based on the sampling density at
the area around each receiver. We shall refer to this method as
geometry-compensating filtering (GCF). The second category
involves methods that approximate the outputs of the prototype
filter applied to the uniformly sampled data. An example is
given in [3], which uses the projections onto convex sets
(POCS) framework applied to nonuniformly sampled data. The
third category involves reconstruction of the data at the regular
sampling locations. The prototype filter can then be applied
to the reconstructed data. The methods given in [4], [5] are
examples of data reconstruction.

The goal of this work is to propose two methods that
generate a linear space-varying (LSV) FIR filter suitable for
filtering the nonuniformly sampled data. We will refer to
these methods as Method A and Method B. The LSV FIR
filter designed by any of these two methods generates the
filter output at equi-spaced intervals. In this respect, both
methods combine filtering and regularization in one operator.
The difference is that

• Method A approximates the prototype filter in the spatial
domain, which has been already designed,

• Method B approximates the ideal response of the proto-
type filter in the wavenumber domain1. In other words,
Method B also skips the intermediate step of designing
the prototype filter.

Compared to existing works, Method A has a similar flavor
as the approach of [2] since they both interpolate a prototype
filter to the actual locations of the receivers. However, the
interpolation in [2] is driven by the geometry of the receiver
arrays while in this paper, the interpolation is based on the
band-limited assumption on the received signal, which is also
utilized in [4], [5]. In reality, such a band-limited assumption
is often valid, and the corresponding interpolation process can
yield a better approximation to the prototype filter response in
the wavenumber domain as will be demonstrated in the paper.

1Wavenumber domain is also known as spatial frequency domain.
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II. PROPOSED ALGORITHMS

For simplicity, we only consider filtering along one spatial
dimension x. The continuous data is represented by d(x); the
data samples gathered at the N locations of the receivers
xj , j = 0, . . . , N − 1 are denoted by d(xj). The nominal
locations of the receivers are defined on the grid x̄n = n∆x
while the actual locations of the receivers are assumed to lie
on the denser grid ¯̄xm = mδx = m(∆x/M) with M being a
positive integer. This is not overly restrictive, since M can be
large and the precise receiver locations are known with high,
but limited, accuracy. We also define the indicator function
s(¯̄xm) to take the value s(¯̄xm) = 1 when a receiver is present
at ¯̄xm and the value zero otherwise. Suppose a prototype LSI
FIR filter has already been defined on the nominal grid, whose
ith tap is denoted as h(x̄i). We assume that h(x̄i) = 0 if
x̄i < 0 or x̄i ≥ Lf∆x, where Lf is referred to as the spatial
support of the FIR filter.

A. Method A
The filter to be designed in Method A is represented

as a set of LSV FIR filters, whose filter taps gl(¯̄xm) for
m = 0, 1, . . . , NM − 1 are defined on the dense grid. The
spatial support of gl(¯̄xm) is the same as that of h(x̄i), therefore
gl(¯̄xm) = 0 if ¯̄xm < 0 or ¯̄xm ≥ Lf∆x (note that [4] imposes a
different FIR constraint on the filter). We desire that the output
of one such filter at output location x̌l should be identical as
if the prototype filter were applied on uniformly sampled data.
In other words,
N−1∑
n=0

h(x̌l− x̄n)d(x̄n) =

NM−1∑
m=0

gl(x̌l− ¯̄xm)s(¯̄xm)d(¯̄xm). (1)

The output locations x̌l lie on the nominal grid, i.e., x̌l =
l∆x = lMδx. Utilizing the band-limited assumption on
d(¯̄xm) it can be shown that

d(¯̄xm) ≈ 1

N

P∑
p=−P

(
N−1∑
n=0

d(x̄n)e−j
2πp
N∆x x̄n

)
ej

2πp
N∆x

¯̄xm , (2)

where N = 2P +1 (a similar expression can be derived when
N is even). We can exchange the order of summation and
arrive at

d(¯̄xm) ≈
N−1∑
n=0

 1

N

P∑
p=−P

ej
2πp
N∆x (¯̄xm−x̄n)

 d(x̄n),

≈
N−1∑
n=0

sin( π
∆x (¯̄xm − x̄n))

N sin( π
N∆x (¯̄xm − x̄n))︸ ︷︷ ︸

sincd(N ;x̄n,¯̄xm)

d(x̄n). (3)

Substituting (3) in (1) yields
N−1∑
n=0

h(x̌l − x̄n)d(x̄n) ≈

NM−1∑
m=0

gl(x̌l − ¯̄xm)s(¯̄xm)

(
N−1∑
o=0

sincd(N ; x̄o, ¯̄xm)d(x̄o)

)
.

(4)

We rewrite (4) in matrix-vector form as

hHl d ≈ gHl SQd (5)

where
hl is an N×1 vector with h(x̌l− x̄n) as its n-th element;
gl is an NM × 1 vector with gl(x̌l − ¯̄xm) as its m-th
element;
S is an NM × NM diagonal matrix with s(¯̄xm) as its
m-th diagonal element;
Q is an NM × N matrix with sincd(N ; x̄o, ¯̄xm) as its
(m, o)th element and
d is an N × 1 vector with d(x̄n) as its n-th element.

A sufficient condition for (5) to hold is

hHl ≈ gHl SQ,

for which a suitable gl can be found by solving the following
least-squares problem

min
gl

{
||hHl − gHl SQ||22

}
≡ min

g̃l

{
||hHl − g̃Hl Q̃||22

}
, (6)

where g̃Hl is formed by removing its elements corresponding
to the zeros of S. Similarly, Q̃ is constructed after removing
the rows of Q corresponding to the zero columns in S. This
eliminates S from (6). In order to limit the spatial support of
gl, we remove the elements of g̃l that correspond to elements
m of gl for which m < lM or m ≥ (l + Lf )M holds, thus
forming ˜̃gl. The corresponding rows of Q̃ are removed as well,
to form ˜̃Q. The problem has a closed-form solution given by

˜̃gHl = hHl
˜̃QH( ˜̃Q ˜̃QH)−1. (7)

A different FIR filter gl has to be calculated for each output
location x̌l. The solution can be seen as a composition of two
operations: the first operation is hHl

˜̃QH = ( ˜̃Qhl)
H , which

can be interpreted as an interpolation of the filter to the actual
locations of the receivers. The second operation ( ˜̃Q ˜̃QH)−1

deconvolves the effects of nonuniform sampling.

B. Method B

In comparison to Method A, Method B does not rely on
the knowledge of the prototype filter hl, which needs to be
pre-designed. To this end, we will try to approximate the
behavior of the prototype filter in the wavenumber domain.
As a first step, let us use a circular convolution operator to
describe the target LSV FIR filter as well as the prototype
filter. Accordingly, (1) should be adapted to the form

N−1∑
n=0

h(x̄(l−n)mod(N))d(x̄n) =

NM−1∑
m=0

g′l(¯̄x(lM−m)mod(NM))s(¯̄xm)d(¯̄xm), (8)

where g′l(¯̄xm) stands for the LSV FIR filter from Method B.
In deriving the above, we have used the assumption that the
output locations x̌l lie on the nominal grid, i.e., x̌l = l∆x =
lMδx. Just like Method A, we require that g′l(¯̄xm) have a
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spatial support in the interval [0, Lf∆x). In other words,
g′l(¯̄xm) = 0 if ¯̄xm < 0 or ¯̄xm ≥ Lf∆x.

To get rid of the dependence on h(x̄i) in (8), we resort to
the wavenumber domain. Suppose the wavenumber response
of the prototype filter is known as hw(k) with −π ≤ k ≤ π.
If we use Hw to denote an N × N diagonal matrix whose
nth diagonal element is given by the sample hw(k) at k =
−π + n 2π

N for n = 0, 1, . . . , N − 1, then the wavenumber-
domain counterpart of (8) can be expressed as

Hw(Fd) = FG′SQFH(Fd), (9)

where we have coined an N×NM matrix G′ to represent the
circular convolution of the filter with the (l,m)th element of
G′ given by g′l(¯̄x(lM−m)mod(NM)); F stands for the N -point
DFT matrix, and S and Q are defined in (5). A sufficient
condition for (9) to hold is

Hw ≈ FG′SQFH . (10)

The right-hand side of (10) can be broken down to three parts:
• G′ is the LSV filter. Its output is defined on the nominal

grid and its input on the dense grid.
• F acts on the columns of G′ to produce the DFT of the

LSV filter gl(x̌l − ¯̄xm) with respect to x̌l.
• SQFH acts of the rows of G′ to produce the nonuniform

DFT of gl(x̌l − ¯̄xm) with respect to ¯̄xm.
The product of FG′SQFH is a wavenumber connection
matrix2 [6], which can be viewed as the wavenumber response
of the LSV FIR filter. Note that the off-diagonal elements in
FG′SQFH are in most cases non-zero, which means that
the relation between the spectra of the data before and after
filtering in the wavenumber domain is not simply an element-
wise multiplication for nonuniform sampling.

From (10), we formulate the following least-squares prob-
lem

min
G′
{||W � (Hw − FG′SQFH)||2F (11)

where W is a weighting matrix that can apply an individual
weight to each element of Hw−FG′SQFH with the symbol
� denoting the Hadamard (element-wise) product. Including
such a weighting matrix is beneficial, for instance, to enable a
better trade-off between different approximation errors in the
passband, stopband as well as the “do-not-care” (transition)
zones.

As in Method A, the matrix S can be eliminated by
removing all the columns of G′ and rows of Q with the same
index as the elements of the diagonal of S that have the value
zero. Let G̃′ and Q̃ respectively be the reduced form of G′

and Q resulting from this column- and row-removal. Then
(11) can be rewritten as

min
G′
{||W � (Hw − FG̃′Q̃FH)||}2F (12)

2In [6] its continuous counterpart is called “frequency connection function”.
We use the term “wavenumber connection matrix” for consistency with the
rest of the terminology in this paper.

This problem can be restated in its vectorized form as

min
vec(G′)

{|| vec(W � (Hw − FG̃′Q̃FH)||}22 ≡

min
vec(G′)

{|| diag(vec(W)) vec(Hw − FG̃′Q̃FH)||}22, (13)

Here vec(A) returns a column-vector that stacks the columns
of the matrix A. The function diag(v) returns a diagonal
matrix with the vector v on its main diagonal.

Using the identity vec(ABC) = (CT ⊗A) vec(B), where
⊗ denotes the Kronecker product, (13) can be rewritten as

min
vec(G′)

{|| diag(vec(W)) vec(Hw)−

diag(vec(W))(F∗Q̃T ⊗ F) vec(G̃))||}22

where ∗ denotes the complex conjugate of a matrix. Let

Ũ = diag(vec(W))(F∗Q̃T ⊗ F)

g̃′ = vec(G̃′).

The elements of g̃′ and rows of Ũ that should be removed
due to the limited spatial support of the filter g′l(¯̄xn) are given
by the indexes of those elements of g̃′ that correspond to the
zero elements of g′l(¯̄xm). If we call ˜̃g′ and ˜̃U the results after
the corresponding row and element removal, the solution is
given by

˜̃g′ = ( ˜̃UH ˜̃U)−1 ˜̃UH diag(vec(W)) vec(Hw) (14)

G′ can be constructed from the elements of ˜̃g′ and can be
applied to the nonuniformly sampled data.

III. RESULTS

The performance of Method A and Method B was ex-
amined using synthetically created seismic data. A portion
of the spectral content of the synthesized data can be found
at the lower part of Fig. 1. The reflections from the Earth’s
subsurface appear mostly on the lower part of the wavenumber
spectrum in the range −0.02m−1 ≤ k′ ≤ 0.02m−1. This
region appears highlighted in all figures. All the plots have
been smoothed by a 5-tap moving average filter. The peaks
found at k′ = ±0.055m−1 are due to waves propagating
along the Earth’s surface. Their presence is often undesired and
should be removed before further processing of the seismic
data. Notice that when the data are not uniformly sampled, the
wavenumber content appears smeared. This is a well-known
side-effect introduced by nonuniform sampling [7].

We generated 100 different realizations of the receiver
locations and filtered the nonuniformly sampled data using
Methods A and B. Method A approximates the prototype
filter whose wavenumber response is given in the upper part
of Figure 1. In Method B, the prototype filter is not given but
is supposed to have a similar passband and stopband region in
the wavenumber domain as in Method A. The LSV FIR filters
resulting form Method A and B have the same spatial support
as that of the prototype filter. The average spectrum of the 100
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Fig. 1. Upper part: the wavenumber response of the prototype filter. Lower
part: the wavenumber content for the data.

realizations can be seen in Fig. 2. In addition to Methods A
and B, an adapted version of the GCF was implemented3.

In addition, we also compared the proposed methods against
1) the ideal case where the prototype filter is applied on the
uniformly sampled and 2) the case where the prototype filter
is applied directly on nonuniform data. In the latter case, the
spectral leakage induced by the irregularities is most obvious
in the passband. In Fig. 2 we see that using the LSI filter on
nonuniformly sampled data gives an output that differs almost
15dB at the edges of the passband. In contrast, Methods A
and B give a filtered output that, on average, is closer to the
ideal case in the low wavenumbers, exhibiting less than 5dB
maximum difference from the uniformly sampled data case
(Fig. 2) in the passband region. This is due to the fact that
Methods A and B compensate for irregularities in sampling.
The attenuation in the stopband, however, is less when using
Methods A and B. This is because the FIR filters generated
for each individual output will not, in general, have zeros at
the same locations of their wavenumber responses. This leads
to a more flat response in the stopband. GCF is somewhere in
the middle, as it interpolates the filter to the locations of the
receivers and compensates for sampling density, but does not
deconvolve the effects of nonuniform sampling.

The standard deviation of the output spectrum can be seen
in Fig. 3. Methods A and B exhibit in this case a significantly
smaller standard deviation in the lower wavenumbers, for
example, in Fig. 3, around 10dB lower than using the LSI
filter. This means that Methods A and B may provide an
output that is, generally, stable.

IV. CONCLUSION

We proposed two methods for generating LSV FIR filters
suitable for filtering nonuniformly sampled data. The resulting
filters yield a more accurate output in the passband than simply

3The method in [2] works on data having two spatial dimensions and is
adapted here to the single spatial dimension case.

Fig. 2. Average spectrum of the filtered data (over 100 realizations).

Fig. 3. Standard deviation from the average spectrum (over 100 realizations).

applying an LSI filter directly to nonuniformly sampled data.
The output is also more stable, as it varies less for different
realizations of the receiver locations.
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[4] H. Johansson and P. Löwenborg, “Reconstruction of nonuniformly sam-
pled bandlimited signals by means of time-varying discrete-time fir
filters,” EURASIP Journal on Advances in Signal Processing, vol. 2006,
2006.

[5] A. Duijndam, M. Schonewille, and C. Hindriks, “Reconstruction of
band-limited signals, irregularly sampled along one spatial direction,”
Geophysics, vol. 64, no. 2, pp. 524–538, 1999.

[6] G. Margrave, “Theory of nonstationary linear filtering in the fourier
domain,” in 1997 SEG Annual Meeting, 1997.

[7] G. Blacquière and L. Ongkiehong, “Single sensor recording: Anti-alias
filtering, perturbations and dynamic range,” in 2000 SEG Annual Meeting,
2000.

Proceedings of the 10th International Conference on Sampling Theory and Applications

235


