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Abstract—This paper considers the recovery of con-
tinuous time signals from the magnitude of its sam-
ples. It uses a combination of structured modulation
and oversampling and provides sufficient conditions on
the signal and the sampling system such that signal
recovery is possible. In particular, it is shown that an
average sampling rate of four times the Nyquist rate
is sufficient to reconstruct almost every signal from its
magnitude measurements.

Index Terms—Bernstein spaces, Paley-Wiener
spaces, phase retrieval, sampling

I. Introduction
In many applications, only intensity measurements are

available to reconstruct a desired signal x. This is widely
known as the phase retrieval problem which for example
occurs in diffraction imaging applications such as X-ray
crystallography, astronomical imaging or speech process-
ing.

In the past, several efforts have been made on the
recovery of finite n-dimensional signals from the modulus
of their Fourier transform. In general however, they require
strong limitations on the signal such as constraints on its
z-transform [1] or knowledge of its support [2]. Analytic
frame-theoretic approaches were considered in [3], [4] and
an algorithm was presented which requires that the num-
ber of measurements grows proportionally with the square
of the space dimension. Ideas of sparse signal represen-
tation and convex optimization where applied in [5], [6]
to allow for lower computational complexity. Recently in
[7], results in the context of entire functions theory have
derived a sampling rate of 4n− 4.
Note that all of the above approaches addressed finite

dimensional signals and the question is whether similar
results can be obtained for continuous signals in infinite
dimensional spaces. In [8] it was shown that real valued
bandlimited signals are completely determined by their
magnitude samples taken at twice the Nyquist rate. In the
present work we are looking at complex valued continuous
signals in Paley-Wiener spaces. Our approach extends
ideas from [3], [4], [6] and involves two steps: first we
apply a bank of modulators to the signal and sample
the subsequent intensity measurements in the Fourier
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domain. In this step, finite blocks of intensity samples are
obtained and a finite dimensional algorithm from [4] can
be used to recover the complex signal samples up to a
constant phase. Secondly, by ensuring an overlap between
subsequent blocks, the unimodular factor in all blocks is
matched and well-known interpolation theorems and the
inverse Fourier transform are used to obtain the time
signal. Therewith we are able to reconstruct the infinite
dimensional signals from samples taken at a rate of four
times the Nyquist rate, which asymptotically coincides
with the value for the finite dimensional case in [4].
Basic notations for sampling and reconstruction in

Paley-Wiener spaces are recaptured in Sec. II, Sec. III
describes our sampling setup. In Sec. IV we provide suf-
ficient conditions for perfect signal reconstruction from
magnitude measurements of the Fourier transform. The
paper closes with a short discussion in Sec.V.

II. Sampling in Paley-Wiener Spaces
Let S ⊆ R be an arbitrary subset of the real axis R. For

1 ≤ p ≤ ∞ we write Lp(S) for the usual Lebesgue space
on S. In particular, L2(S) is the Hilbert space of square
integrable functions on S with the inner product

〈x, y〉L2(S) =
∫
S
x(θ) y(θ) dθ ,

where the bar denotes the complex conjugate. In finite
dimensional spaces 〈x, y〉 = y∗x where ∗ denotes the con-
jugate transpose. Let T > 0 be a real number. Throughout
this paper T = [−T/2, T/2] stands for the closed interval of
length T , and PWT/2 denotes the Paley-Wiener space of
entire functions of exponential type T/2 whose restriction
to R belongs to L2(R). The Paley-Wiener theorem states
that to every x̂ ∈ PWT/2 there is an x ∈ L2(T) such that

x̂(z) =
∫
T
x(t) eitz dt for all z ∈ C , (1)

and vice versa. If not otherwise noted, our signal space will
be L2(T), i.e. we consider signals of finite energy which
are supported on the finite interval T. These are natural
assumptions for signals in reality. In the following we will
call x the signal in the time domain and x̂ the signal in
the Fourier domain, since its restriction to the real axis is
a Fourier transform.

A sequence Λ = {λn}n∈Z of complex numbers is said
to be complete interpolating for PWT/2 if and only if
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Fig. 1. Measurement setup: In each branch, the unknown signal x
is modulated with a different sequence p(m), m = 1, 2, . . . ,M . Sub-
sequently, the intensities of the resulting signals y(m) are measured
(IM) and uniformly sampled in the frequency domain.

the functions {φn(t) := e−iλnt}n∈Z form a Riesz basis for
L2(T) [9]. Let x ∈ L2(T) be arbitrary. Then (1) shows that

x̂(λn) = 〈x, φn〉L2(T) for all n ∈ Z .

Since {φn}n∈Z is a Riesz basis for L2(T) the signal x can
be reconstructed from the samples x̂(Λ) = {x̂(λn)}n∈Z by

x(t) =
∑
n∈Z 〈x, φn〉 ψn(t) =

∑
n∈Z x̂(λn)ψn(t) , (2)

where {ψn}n∈Z is the unique dual Riesz basis of {φn}n∈Z
[10]. It is well-known that in the Fourier domain

ψ̂n(z) = S(z)
S′(λn)(z − λn) with S(z) = zδΛ lim

R→∞

∏
|λn|<R
λn 6=0

(
1− z

λn

)
with δΛ = 1 if 0 ∈ Λ and δΛ = 0 otherwise. S is an
entire function of exponential type T/2, and the infinite
product converges uniformly on compact subsets of C if Λ
is a complete interpolating sequence (see [11]).
Example 1: The well known Shannon sampling series is
obtained for regular sampling with λn = n 2π

T , n ∈ Z.
Then S(z) = sin(T2 z) and ψ̂n(z) = sinc(T2 [z − n 2π

T ])
where sinc(x) := sin(x)/x. This corresponds to x(t) =∑
n∈Z x̂(λn) e−in 2π

T t1T(t) in the time domain, where 1T(t)
denotes the indicator function on T.

III. Measurement Methodology
We apply a measurement methodology which uses over-

sampling in connection with structured modulations of the
desired signal, inspired by the approach in [6]. Suppose
x ∈ L2(T) is the signal of interest. In our sampling scheme
in Fig. 1, we assume that x is multiplied with M known
modulating functions p(m). In optics, these modulations
may be different diffraction gratings between the object
(the desired signal) and the measurement device [6]. This
way we obtain a collection of M representations (or il-
luminations) y(m) of x. Afterwards, the modulus of the
Fourier spectra ŷ(m) are measured and uniformly sampled
with frequency spacing β.
Let p(m) have the following general form

p(m)(t) :=
∑K
k=1 α

(m)
k eiλkt (3)

where λk and α(m)
k are complex coefficients. The samples

in the mth branch are then given by

c(m)
n = |ŷ(m)(nβ)|2 =

∣∣∣∣∣
K∑
k=1

α
(m)
k x̂(nβ + λk)

∣∣∣∣∣
2

= |〈x̂n,α(m)〉|2 (4)

with the length K vectors

α(m) :=


α

(m)
1
...

α
(m)
K

 and x̂n :=

 x̂(nβ + λ1)
...

x̂(nβ + λK)

 .

We will show that if α(m) and the interpolation points
{λn,k := nβ + λk}k=1,...,K

n∈Z are properly chosen, it is possi-
ble to reconstruct x from all samples c = {c(m)

n }m=1,...,M
n∈Z .

A. Choice of the coefficients α(m)
k

The first recovery step determines the vector x̂n ∈ CK
from the M intensity measurements c(m)

n for every n ∈
Z, using a result from [4]. It states that if the family of
CK-vectors A = {α(1), . . . ,α(M)} constitutes a 2-uniform
M/K-tight frame which contains M = K2 vectors or A
is a union of K + 1 mutually unbiased bases in CK , then
every x̂n ∈ CK can be reconstructed up to a constant
phase from the magnitude of the inner products (4). For
simplicity, we only discuss the first case here and therefore
fix M = K2.
Condition A: A sampling system as in Fig. 1 is said to
satisfy Condition A if A constitutes a 2-uniform M/K-
tight frame.
Then reconstruction will be based on the following formula

Qx̂n = (K + 1)
K

M∑
m=1

c(m)
n Qα(m) −

1
K

M∑
m=1

c(m)
n I (5)

with rank-1 matrices Qx = xx∗. For K = 2 a valid choice
for A reads [4]

α(1) =
(
a

b

)
, α(2) =

(
b

a

)
, α(3) =

(
a

−b

)
, α(4) =

(
−b
a

)
with a =

√
1
2 (1− 1√

3 ) and b = ei5π/4
√

1
2 (1 + 1√

3 ).

B. Choice of the interpolation points
Now it is necessary to find conditions which allow unique

interpolation from the known samples. Let {λk}Kk=1 be
ordered increasingly by their real parts. For each n ∈ Z,
the vector x̂n contains the values of x̂ at K distinct
interpolation points in the complex plane

λan := {λan,k}Kk=1 with λan,k = nβ + λk , n ∈ Z . (6)

Therein, the parameter a ∈ N denotes the number of
overlapping points of consecutive sets (6) (cf. also Fig.2).
More precisely, we require for every n ∈ Z that

λan,i = λan−1,K−i+1 for all i = 1, . . . , a . (7)
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Fig. 2. Illustration for the choice of interpolation points in the
complex plane for K = 6 in (3) and an overlap a = 2.

In the following ΛaO,n = λan∩λ
a
n+1 is the set of overlapping

interpolation points between λan and λan+1, and we define
the overall interpolation sequence

Λa :=
⋃
n∈Z λ

a
n .

In general we allow for a ≥ 1, but we will see that a = 1
is generally sufficient for reconstruction.
As explained in Sec. II, x ∈ L2(T) can be perfectly
reconstructed by (2) if Λa is complete interpolating for
PWT/2. This gives a second condition on our sampling
system:
Condition B: A sampling system as in Fig. 1 is said
to satisfy Condition B if the coefficients {λk}Kk=1 in (3)
are such that Λa is complete interpolating for PWT/2 and
satisfies (7) for a certain 1 ≤ a < K.
In general it is hard to characterize sets which fulfill this
condition. One famous example is the set of zeros of a sine-
type function of type T̃ /2 ≥ T/2 which is β-periodic (see,
e.g., [9], [11]). Such sine-type functions are entire functions
f of exponential type T̃ /2 with simple and isolated zeros
and for which there exist positive constants A,B,H such
that

A e T̃2 |η| ≤ |f(ξ + iη)| ≤ B e T̃2 |η| , for |η| ≥ H .

Note that sin( T̃2 z) is a trivial example for a sine-type
function (cf. Example 1). Moreover, shifting the zeros of
one sine-type functions arbitrarily in their imaginary parts
yields the zero set of another sine-type function [12]. The
complete interpolating property is also preserved under
small shifts in the real part (see Katsnelson’s theorem,
e.g. in [11]).

IV. Phaseless Signal Recovery

We assume a sampling scheme as described in Section III
which satisfies Condition A and B. For this setup, we show
that almost every x ∈ L2(T) (up to a set of first category)
can be reconstructed from the samples (4). The proof
provides an explicit algorithm for perfect signal recovery.
Theorem 1: Let x ∈ L2(T) be sampled according to the
scheme in Section III which satisfies Condition A and B,
and let c = {c(m)

n }m=1,...,M
n∈Z be the sampling sequence in (4).

If the set x̂(ΛaO,n) contains at least one non-zero element

for each n ∈ Z, then x can be perfectly reconstructed from
c up to a constant phase.

Proof: According to Condition B of the sampling
system, Λa is complete interpolating for PWT/2. There-
fore the signal x can be reconstructed from the vectors
{x̂n}n∈Z using (2). It remains to show that {x̂n}n∈Z can
be determined from c.
Let n ∈ Z be arbitrary. Since the sampling system satisfies
Condition A, we can use (5) to obtain the rank-1 matrix
Qn := x̂nx̂∗n from the measurements {c(m)

n }Mm=1. Then
x̂n ∈ CK is obtained by factorizing Qn. However, such a
factorization is only unique up to a constant phase factor.
If the phase φn,i of one element [x̂n]i is known, the vector
x̂n can be completely determined from Qn by

x̂(nβ + λk) =
√

[Qn]k,k ei(φn,i−arg([Qn]i,k)), ∀k 6= i . (8)

Assume that we start the recovery of the sequence
{x̂n}n∈Z at a certain n0 ∈ Z and set the constant phase
of x̂n0 arbitrarily to θ0 ∈ [−π, π]. In the next step, we
determine x̂n0+1. After the factorization of Qn0+1, we use
the nonempty overlap to carry over the phase from n0
to n0 + 1. Since by assumption the overlapping point,
say λan0+1,i, can be chosen such that it is non-zero, the
propagation of the constant phase can be ensured. Thus,
we can completely determine x̂n0+1 and successively all
n = n0 ± 1, n0 ± 2, . . . using (8) to obtain x̂(Λa) eiθ0 .
The arbitrary setting of the phase of the initial vector x̂n0

yields a constant phase shift θ0 for all x̂n which persists
after the reconstruction of the time signal as in (2).

Theorem 1 states that x ∈ L2(T) can only be recon-
structed if x̂ ∈ PWT/2 has at most a − 1 zeros on the
overlapping interpolation sets ΛaO,n. However, this restric-
tion is not too limiting. On the one hand, it is not hard to
see that the subset of all x ∈ L2(T) which does not satisfy
this condition is of first category [13]. On the other hand, it
is known that the zeros of an entire function of exponential
type can not be arbitrarily dense. For example, defining
Zn := {z ∈ C : nπ/T < |z| ≤ (n + 1)π/T}, the result
in [14] states that for every x̂ ∈ PWT/2 there exist only
finitely many sets Zn which contain more than one zero of
x̂. Consequently, choosing the spacing of the interpolation
points in the overlapping sets ΛaO,n less than π/T , it is very
unlikely that a randomly chosen function from PWT/2
fails to satisfy the condition of Theorem 1, especially for
a > 1.
When the overall energy of the signal is known, even

such pathological cases can be avoided such that the last
condition in Theorem 1 always holds true. To this end, we
first state a simple variant of a lemma by Duffin, Schaeffer
[15].
Lemma 2: Let x̂(z) ∈ PWT/2 be an entire function of
z = ξ+ iη satisfying |x̂(ξ)| ≤M on the real axis. Then for
every T ′ > T the function

v̂(z) = M cos(T
′

2 z)− x̂(z) (9)
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belongs to the Bernstein space B∞T ′/2 and there exists a
constant H = H(T, T ′) such that |v̂(z)| > 0 ∀z : |η| > H.
A proof can be found in [13]. The Bernstein space B∞T ′/2
is the set of all entire functions of exponential type T ′/2
whose restriction to R is in L∞(R). Upon this we can es-
tablish a corollary for signals which have a known maximal
energy W0.
Corollary 3: Let x ∈ L2(T) : ‖x‖L2(T) ≤ W0 be sampled
according to the scheme in Sec. III. Then there exist
interpolation sequences Λa with overlap a ≥ 1 such that
every x can be perfectly reconstructed (up to a constant
phase) from the measurements (4).
Sketch of proof: The theorem of Plancherel-Pólya implies
that there exists a constant M independent of x such that
|x̂(ξ)| ≤ MW0 for all ξ ∈ R. Using T ′ > T we can define
v̂ by (9) which only has zeros for |η| ≤ H by Lemma 2.
In the measurement scheme this corresponds to adding
a cosine to the signal. Subsequently, the function v̂ is
modulated and sampled at interpolation points Λa, which
we choose as the zero set of a sine-type function of type
T̃ /2 > T ′/2. By [12] we can shift the imaginary parts
of the interpolation points such that |ηk| > H for all k
while Λa remains to be the zero set of a sine-type function
denoted by S. Since v̂ ∈ B∞T ′/2 and Λa is the set of zeros of
a sine-type function, the sequence {dn = v̂(λn) eiθ0}n∈Z is
in `∞, and we apply a generalization of [11, Lec. 21] (see
[13]) to reconstruct v̂ from the sequence {dn}n∈Z by

v̂(z) eiθ0 =
∑
n∈Z dn

S(z)
S′(λn)

[
1

z−λn + 1
λn

]
,

where the second term in the sum is omitted when λn = 0.
Since θ0 is unknown, we can only obtain

x̃(z) = MW0 cos
(
T ′

2 z
)
− v̂(z) eiθ0

= x̂(z) eiθ0 +MW0 cos
(
T ′

2 z
)

(1− eiθ0).

However, applying the inverse Fourier transform yields
x(t) eiθ0 for t ∈ T which is the desired signal up to a
constant phase since the distributional Fourier transform
of a cosine vanishes within T.

V. Discussion and Outlook
To determine the sampling system in Fig.1, one has to

fix K, M , a and β. The number K ≥ 2 can be chosen
arbitrarily. ThenM = K2 is fixed, and 1 ≤ a ≤ K−1. The
sampling period β has to be chosen such that the sampling
system satisfies Condition B and in particular that Λa is
complete interpolating for PWT/2. As discussed before,
one possible choice could be the zeros of the function
sin( T̃2 z) with T̃ > T ′ > T . Then δ := λk − λk−1 = 2π/T̃
such that β = (K − a) δ, and the total sampling rate
becomes

R(a,K, T̃ ) = M

β
= K2

(K − a) δ = K2

K − a
T̃

2π = K2

K − a
T̃

T
RNy

where RNy := T/(2π) is the Nyquist rate. It is apparent
that R(a,K, T̃ ) grows asymptotically proportional with K
and increases with the overlap a. R(a,K, T̃ ) is bounded
below by

inf
1≤a<K,
K≥1,T̃>T

R(a,K, T̃ ) = inf
T̃>T

R(1, 2, T̃ ) = 4RNy .

Since T̃ /T can be made arbitrarily close to 1 using
Theorem 1 and Corollary 3, we can sample at a rate
which is almost as small as 4RNy while still ensuring
perfect reconstruction. This corresponds to the findings
in [3] for finite dimensional spaces, where it was shown
that basically any x ∈ CN can be reconstructed from
M ≥ 4N − 2 magnitude samples.
We note that the above framework can be applied

exactly the same way for bandlimited signals. To this end,
one only has to exchange the time and frequency domain.
Then the modulators in Fig. 1 have to be replaced by linear
filters and the sampling of the magnitudes has to be done
in the time domain. In future works, our approach will be
extended to larger signal spaces [13] and the influence of
sampling errors will be investigated in detail.
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