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Abstract—A commonly used approach for analyzing massive
high dimensional datasets is to utilize diffusion-based kernel
methods. The kernel in these methods is based on a Markovian
diffusion process, whose transition probabilities are determined
by local similarities between data points. When the data lies on
a low dimensional manifold, the diffusion distances according
to this kernel encompass the geometry of the manifold. In
this paper, we present a generalized approach for defining
diffusion-based kernels by incorporating measure-based infor-
mation, which represents the density or distribution of the data,
together with its local distances. The generalized construction
does not require an underlying manifold to provide a meaningful
kernel interpretation but assumes a more relaxed assumption
that the measure and its support are related to a locally low
dimensional nature of the analyzed phenomena.

I. INTRODUCTION

The diffusion maps (DM) method [3] is a popular kernel
method that utilizes a stochastic diffusion process to analyze
the data. It defines diffusion affinities via symmetric conjuga-
tion of a transition probability operator. These probabilities
are based on local distances between the data points. The
Euclidean distances in the embedded space represent the
diffusion distances in the original space. When the data is
sampled from a low dimensional manifold, the diffusion paths
follow the manifold and the diffusion distances capture its
geometry.

In this paper, we enhance the DM method by incorporating
information about the distribution of the data, in addition to
local distances on which DM is based. This distribution is
expressed in term of a measure over the observable space. The
measure (and its support) replace the manifold assumption.
We assume that the measure quantifies the likelihood for
the presence of data over the geometry of the space. This
assumption is significantly less restrictive than the need to
have a manifold present. In practice this measure can either be
provided as an input (e.g., by a-priori knowledge or a statistical
model), or deduced from a given training set (e.g., by a
density estimator). The manifold assumption can be expressed
in terms of the measure assumption by setting the measure
to be concentrated around an underlying manifold or (in the
extremely restrictive case), to be supported by the manifold.
Therefore, the measure assumption is not only less restrictive
than the manifold assumption but it also generalizes it.

In the suggested construction, the used measure, which can
represent densities, is separated from the distances and from

the analyzed dataset. Therefore, when dealing with discrete
data, this construction can utilize two different sets of samples:
the analyzed dataset and the measure-related set with attached
empirical measure values. Furthermore, from theoretical point
of view, this construction combines continuous measures with
either discrete or continuous datasets.

II. PROBLEM SETUP

Let Ω ⊆ Rn, for some natural n, be a metric space with
the Euclidean distance metric ‖·‖. The integration notation∫
·dy in this paper will refer to the Lebesgue integral

∫
Ω
·dy

over the subspace Ω, instead of the whole space Rn. Let
µ be a probability measure defined on Ω and let q(x) be
the distribution function of µ, i.e., dµ(x) = q(x)dx. This
measure represents the distribution of data in Ω. We aim
to combine the distance metric of Ω and the measure µ to
define a kernel function k(x, y), x, y ∈ Ω, which represents
the affinities between data points in Ω. Then, these affinities
can be used to construct a diffusion map, as described in
Section II-A, and utilize it to embed the data into a low-
dimensional representation that considers both proximities and
distributions of the data points.

A. Diffusion maps

The diffusion maps (DM) framework utilizes a set of
affinities to define a Markovian (random-walk) diffusion pro-
cess over the analyzed data [3]. The spectral properties of
this process are then used to obtain a representation of the
data, where diffusion distances are expressed as Euclidean
distances. The achieved representation reveals the underlying
patterns of the data such as clusters and differences between
normal and abnormal regions.

Technically, DM is based on an affinity kernel k and
the associated integral operator that is defined as Kf(x) =∫
k(x, y)f(y)dy, x ∈ Ω, for any function f ∈ L2(Ω). The

affinity kernel k is normalized by a set of degrees ν(x) ,∫
k(x, y)dy, x ∈ Ω, to obtain the transition probabilities

p(x, y) , k(x, y)/ν(x), from x ∈ Ω to y ∈ Ω, of the Marko-
vian diffusion process. Under mild conditions on the kernel
k, the resulting transition probability operator has a discrete
decaying spectrum of eigenvalues 1 = λ0 ≥ |λ1| ≥ |λ2| ≥ . . .,
which are used together with their corresponding eigenvectors
~1 = φ0, φ1, φ2, . . . to achieve the diffusion map of the data.
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Each data point x ∈ Ω is embedded by this diffusion map to
the diffusion coordinates (λ1φ1(x), . . . , λδ(x)φδ(x)), where
the exact value of δ depends on the spectrum of the transition
probabilities operator P , whose kernel is p(x, y). The relation
between the diffusion distance metric ‖p(x, ·)− p(y, ·)‖ and
the Euclidean distances in the embedded space, is a result
of the spectral theorem [3], [5]. When the data in Ω lies on a
low dimensional manifold, its tangent spaces can be utilized to
express the infinitesimal generator of the associated diffusion
process in terms of the Laplacian operators on the manifold.

III. MEASURE-BASED DIFFUSION AND AFFINITY KERNELS

In this section, we define and analyze an affinity kernel that
is based on the distances in Ω and on the measure µ. We use
this kernel together with the DM method, which was briefly
described in Section II-A, to obtain a measure-based diffusion
affinity kernel and its resulting diffusion map. In Section III-A,
we show the relations between the infinitesimal generator of
the resulting diffusion operator and the Laplacian operator on
the space Ω and the measure µ.

In order to define the desired kernel, we first define the
function

gε(t) ,

{
e−t

2/ε t ≤ ρ
√
ε

0 otherwise
, (III.1)

for any ε > 0 and some constant ρ � 1. Notice that for a
sufficiently large ρ, the Gaussian kernel, which is usually used
in the DM method, can be defined as kε(x, y) , g2ε(‖x− y‖),
and this definition will be used in the rest of the paper.
Definition III.1 uses the function gε to define an alternative
kernel that incorporates both local distance information, as
the Gaussian kernel does, and measure information, which the
Gaussian kernel lacks.

Definition III.1 (Measure-based Gaussian Correlation ker-
nel). The Measure-based Gaussian Correlation (MGC) affinity
function k̃ε : Ω × Ω → R is defined as k̃ε(x, y) ,∫
gε(‖x− r‖) · gε(‖y − r‖)dµ(r). The MGC integral opera-

tor is defined by this function as K̃εf(x) =
∫
k̃ε(x, y)f(y)dy

for every function f ∈ L2(Ω) and data point x ∈ Ω.

The MGC affinity from Definition III.1, is in fact the inner
product in L2(Ω, µ) (correlation) between two Gaussians of
width ε that are centered at x and y, respectively. This affinity
takes into consideration the measure µ, between the described
Gaussians around at the examined data points. The numerically
significant positions of r in this correlation must be close
enough to x and to y (based on their Gaussians of radius ε), but
they must also be in an area with a high enough concentration
of the measure µ. Notice that the measure information is con-
sidered and incorporated in the affinity definitions. From the
identity ‖x− r‖2 + ‖y − r‖2 = 1

2 ‖x− y‖
2

+ 2
∥∥x+y

2 − r
∥∥2

,
the MGC affinity function becomes

k̃ε(x, y) = kε(x, y) ·
∫
gε/2

(∥∥∥∥x+ y

2
− r
∥∥∥∥) dµ(r). (III.2)

Equation III.2 shows the relation between the MGC kernel
and the Gaussian kernel kε(x, y). While the Gaussian affinity

only considers the distances between the examined data points,
the MGC affinity also considers the region in which this
distance is measured by using a Gaussian around the midpoint
between them. This midpoint represents the direct path that de-
termines the distance between the two data points. For a given
distance between two data points, the MGC affinity increases
when its path lies in an area with a high concentration of the
measure µ, and decreases when it lies in an area with a low
concentration of µ. If the measure µ is uniform over Ω, then
the MGC kernel becomes the same as the Gaussian kernel up
to a constant.

(a) When the data lies around a
curve, the MGC affinities con-
sider paths that follow the curve.

(b) When the data lies in two
separate clusters, the affinities
between data points within a
cluster are higher than data
points from a different cluster.

Fig. III.1. An illustration of the MGC affinities in two common data analysis
scenarios. For every pair of compared data points, the significant values of the
integration variable r, from Definition III.1 or the equivalent representation
from Eq. III.2, are marked.

The dual representation of the MGC kernel in Defini-
tion III.1 and Eq. III.2 can be used to detect and consider
several common patterns in data analysis directly from the
initial construction of the kernel. Figure III.1(a) uses the
formulation in Definition III.1 to illustrate a case when the
data is concentrated in areas around a curve with significant
curvatures. In this case, the affinity will be more affected by
the distances over the path that follows the “noisy” curve
and not by the directions that follow sparse areas and bypass
the curve. Figure III.1(b) uses the formulation in Eq. III.2 to
illustrate the affinities when the data is concentrated in two
distinct clusters. In this case, we can see that the affinity
between data points from different clusters is significantly
reduced due to the measure even if they are relatively close.

As proved in [1], the presented MGC affinity kernel satisfies
the spectral properties that are required (and assumed) in [3],
[5] for its utilization with the DM framework. These properties
enable us to define a diffusion process that is based on the
MGC affinities. Then, the resulting diffusion map is used to
embed the data in a way that considers the distances and the
measure distribution.
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A. Infinitesimal generator

The DM framework is based on Markovian diffusion pro-
cess, which is defined and represented by a transition proba-
bility operator denoted by Pε. The infinitesimal generator of
this operator encompasses the nature of the diffusion process.
In [3], [5], it was shown that when the data is sampled
from a low dimensional underlying manifold, the infinitesimal
generator of Pε has the form of Laplacian+Potential. In this
section, we show a similar result, when using the MGC-
based diffusion without requiring the underlying manifold
assumption to hold.

The MGC affinity function k̃ε is symmetric and positive,
i.e., k̃ε(x, y) > 0 for any pair of data points x, y ∈ Ω. To
convert it to be a transition kernel of a Markov chain on Ω,
we normalize it to be p̃ε(x, y) , k̃ε(x,y)

νε(x) . We define the cor-
responding stochastic operator P̃εf(x) ,

∫
p̃ε(x, y)f(y)dy.

The infinitesimal generator of the diffusion transition opera-
tor P̃ε is defined as L , lim

ε→0
(I− P̃ε)/ε. Theorem III.1, whose

proof appears in [1], shows that the operator L takes the form
Laplacian+potential, which is similar to the result shown in [5,
Corollary 2]. The expression, which Theorem III.1 provides
for L, characterizes the differential equation for diffusion
processes [2], [4].

Theorem III.1. If the density function q is in C4(Ω), then the
infinitesimal generator L of the MGC-based diffusion operator
is

Lf = −m2

m0

(
∆f +

〈
∇q
q
,∇f

〉)
, f ∈ C4(Ω),

where, m0 =
∫
g1(‖x‖)dx and m2 =

∫
g1(‖x‖)(x(j))2dx.

IV. GEOMETRIC EXAMPLE

In this section, we demonstrate the MGC kernel and the
resulting diffusion map. A noisy data that is spread around a
spiral curve is analyzed, and the results are compared with
the “classic” DM [3]. This example also demonstrates the
separation between the analyzed data and the data distribution,
which is a unique feature of the presented method.

(a) Noisy data around the curve (b) An exponentially-decaying mea-
sure around the curve

Fig. IV.1. A spiral curve with 5000 noisy data points concentrated around
it, and 104 points that represent an exponentially-decaying measure around
the curve. Red color indicates large measure weights and blue color indicates
small measure weights.

(a) K neighborhood (b) K̃v neighborhood

Fig. IV.2. A neighborhoods from the Gaussian kernel and the MGC kernels
on the spiral curve. Close points are colored by white, and far points are
colored by black.

We use a noisy spiral curve (see Fig. IV.1(a)) for the com-
parison between MGC-based DM and the classical DM. The
dataset was produced by sampling 500 equally spaced points
from the curve and then sampling 10 normally distributed data
points around each of these curve points. The resulting data
has 5000 data points that lie in areas around the curve, as
shown in Fig. IV.1(a), where the curve is marked in red and
the noisy data points are marked in blue. We used the same
scale meta-parameter ε to the compared DM applications. This
meta-parameter was set to be sufficiently high to overcome the
noise and to detect the high affinity between data points that
originated from the same position (out of the 500 curve points)
on the curve.

The MGC kernel from Definition III.1 requires to define
a measure over the area where the data lies. Notice that the
measure of the actual data points is not required. We can define
a completely different set of points r from Definition III.1
and then define their weights, which represent their measure
values. The measure we used is based on 104 points, dis-
tributed normally around a spiral curve. The weights of the
point decay exponentially in relation to their distance from
the curve. The resulting measure is denoted by µv and it is
presented in Fig. IV.1(b).

We use the notation K̃v to denote the matrix that results
from Definition III.1, with the measure µv . Notice that even
though the measure is based on 104 positions of the integration
variable r (from Definition III.1), the kernel and its normalized
versions are of size 5000×5000, since the data has only 5000
data points.

Figure IV.2 compares the neighborhoods that are repre-
sented by the kernels K and K̃v . While the Gaussian kernel
captures inter-level affinities (i.e., it links different levels of
the spiral), the MGC kernel only capture relations in the same
level of the spiral, thus, it is able to separate between these
levels. In addition, the shape of the neighborhoods of the
MGC kernel form ellipses whose major axes clearly follow
the significant tangential directions of the curve. The Gaussian
kernel, however, captures circular neighborhoods that do not
express any information about the significant directions of the
data.

The embedding, which is achieved by DM, is based on
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(a) Gaussian-based stationary distri-
bution

(b) MGC-based stationary distribu-
tion

Fig. IV.3. The stationary distributions of: (a) the Gaussian-based diffusion
process, and (b) the MGC-based diffusion process (low densities are repre-
sented by dark gray levels, and vise-versa.)

a diffusion process that has a stationary distribution when
the time is taken to infinity. This distribution reveals the
concentrations and the underlying potential of the diffusion
process. It is represented by the first left eigenvector of
the diffusion transition operator. Figure IV.3 compares the
stationary distributions of the Gaussian-based diffusion with
the MGC-based diffusion. This comparison shows that the
Gaussian-based diffusion considers the entire spiral as one pit
of potential. At infinity, the diffusion is distributed over the
entire region of the curve. The MGC-based diffusion, on the
other hand, separates different levels of the spiral. At infinity,
this diffusion is concentrated on the curve levels themselves
and not on the areas between them.

Finally, we compare between the embedded spaces of the
Gaussian-based DM and the MGC-based DM. Figure IV.4
presents these spaces based on the first three diffusion co-
ordinates. The comparison in Fig. IV.4 clearly shows that the
MGC-based embedding results in a better separation between
the spiral levels. Figure IV.4 further establishes this observa-
tion by showing that, in fact, the Gaussian-based diffusion
considers the whole noisy spiral as a two-dimensional disk.
The MGC-based embedding, on the other hand, separates
the levels of the spiral by “stretching” it apart in the three-

(a) Gaussian-based DM (b) MGC-based DM

Fig. IV.4. The first three diffusion coordinates of the Gaussian-based and
MGC-based DM embeddings.

dimensional embedded space.
The superior results (e.g., separation between the spiral

levels) of the MGC-based DM demonstrate its robustness to
noise. The reason for this robustness is because the noise is
part of the model on which the MGC construction is based.
The Gaussian-based DM assumes that the data lies on (or it is
sampled from) an underlying manifold, and any significant
noise outside this manifold may violate this assumption.
The MGC-based DM, on the other hand, already assumes
variable concentrations and distributions of the data, which are
represented by the measure and incorporated into the affinities.
Therefore, this setting is more natural when dealing with data
that is concentrated around an underlying manifold structure
but does not necessarily lie on the manifold.

V. CONCLUSION

We presented a generalized version of DM, which is based
on the MGC kernel instead of the Gaussian kernel. We
replaced the commonly-used manifold assumption in DM
with a measure assumption. Namely, we assume access to
a measure that represents the locally low dimensional nature
of the analyzed data, its distributions and its densities. The
MGC kernel was presented and formulated in two equivalent
forms that incorporate the measure-based information together
with local distances between data points. The infinitesimal
generator of the MGC-based diffusion process is similar to
the diffusion process in [3], and its spectral properties enable
its utilization for dimensionality reduction.

We demonstrated the robustness of the MGC-based DM to
noise, which is due to the noise being considered as part of the
measure assumption while it violates the manifold assumption.
Since the MGC-based construction considers the measure and
the data points separately, it is able to analyze a given measure
distribution by using a separated grid, as we will show in
future work. This application cannot be achieved by the classic
DM [3], which is based solely on local distances and does not
consider a separately-provided measure.
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