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ABSTRACT 

In practical realizations of sequential (or pipelined) A/D 
converters, some form of redundancy is typically 
employed to help absorb imperfections in the underlying 
circuits. The purpose of this paper is to review the various 
ways in which redundancy has been used in successive 
approximating register (SAR) ADCs, and to connect 
findings from the information theory community to ideas 
that drive modern hardware realizations. 
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1. INTRODUCTION 

Analog-to-digital (A/D) converters map continuous-
time, continuous-amplitude signals into a discretized 
representation via sampling and quantization. In a typical 
hardware implementation, the precision of this mapping is 
impaired by nonidealities of the underlying electronic 
circuit, as for instance mismatch between nominally 
identical components. In practice, these nonidealities can 
be mitigated via a number of design techniques that can be 
categorized into the following groups: (1) precision 
analog design, (2) analog or digital calibration techniques, 
and (3) redundancy. 

Precision analog design techniques aim at designing 
(or sizing) the circuit such that its precision matches the 
desired specifications by construction. While this 
approach can be practical, it sometimes causes significant 
overhead, for example in terms of power dissipation. To 
address this issue, calibrated A/D converters correct 
circuit imperfections by measuring the induced errors and 
by adjusting a correction circuit in the analog or digital 
domain. Introducing redundancy in the A/D conversion 
process is another popular solution, but it differs 
fundamentally from calibration in the sense that the errors 
are neither measured, nor corrected, but simply tolerated 
and rejected by the conversion algorithm. Many modern 
A/D converters utilize a combination of calibration and 
redundancy and employing redundancy is often required 
to make certain calibration techniques work. 

To this author’s best knowledge, the use of redundancy 
in A/D converters dates back to 1964 [1]. Since then, 
many variants of the idea have been proposed and used in 
practice. Most recently, however, there has been renewed 
interest in research on this topic for the successive 
approximation register (SAR) architecture, which has 
gained popularity due to its compatibility with nano-scale 
integrated circuit technologies [2]. As we will explain 
below, SAR ADCs can benefit from redundancy in a 

variety of intriguing ways, some of which have been 
discovered or applied only recently. Within this context, 
the purpose of this paper is to summarize the state-of-the-
art in the design of SAR ADCs with redundancy. 
 

2. IDEAL A/D CONVERSION AND BETA-
EXPANSION 

Ideal A/D conversion of a continuous input variable  
0  x < 1 can be viewed as a binary expansion of the form 

ොݔ ൌ෍ܾ௞2ି௞
ே

௞ୀଵ

 (1) 

Here, b1, …, bN  {0, 1} are the bits of the binary 
representation and ݔො െ  is the quantization error. The bits ݔ
can be determined using a binary search algorithm that 
uses the initial guess x1 = 1/2 and the recursion 

௞ݔ ൌ ௞ିଵݔ ൅  ௞2ି௞ (2)ݏ

where 

௞ݏ ൌ ൜
൅1 ݔ ൐ ௞ݔ
െ1 ݔ ൑ ௞ݔ

 (3) 

and ܾ௞ ൌ ሺݏ௞ ൅ 1ሻ/2 . This process can be interpreted 
graphically using the decision tree shown in Figure 1 [3]. 
The dotted lines represent all possible paths for xk, and the 
solid lines correspond to an example path for a specific 
input x. An important property of this conversion 
algorithm is that the path that leads to ݔො is unique. This 
also implies that there exists a unique bit pattern for each 
input, and more importantly, any error in the bit decisions 
given by (3) will prevent us from achieving the best 
possible approximation. 

Consider now a modification of (1) such that 

ොݔ ൌ ௞ିߚ෍ܾ௞ߙ
ே

௞ୀଵ

 (4) 

where 1 <  < 2 and  = –1 is a scale factor that sets the 
full-scale range to unity. As explained in [4], this “beta-
expansion” [5] contains redundancy, in the sense that 
multiple bit patterns can lead to an approximation within a 
certain error bound. This is illustrated graphically in 
Figure 2. Here,  = 23/4 and the algorithm uses N = 4 
steps. After the last step, the obtained approximation is 
digitally mapped onto the closest level of an ideal 3-bit 
A/D converter. 

As we can see from the pattern of all possible paths, 
there are multiple trajectories that terminate at the same ݔො. 
This means that certain decision errors can be absorbed 
without affecting the conversion result. For instance, as 
shown using the bold dashed line, a decision error in the 
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third step will still lead to the correct conversion result. 
The cost for this error tolerance is two-fold: (1) the 
number of steps must be larger than the number of bits 
that are being resolved and (2) extra hardware is needed to 
map the raw bit pattern into the usual binary output. 

The magnitude of the tolerable decision error in each 
step can be estimated by computing the difference 
between the current bit weight and the sum of all 
remaining weights. For example, consider the above-
described converter with ߚ ൌ 3/4, resolving three bits in 
4 steps. The first bit enters (1) with a weight of ିߚଵ ൌ
0.595. The sum of the remaining weights is ିߚଶ ൅ ଷିߚ ൅
ସିߚ ൌ 0.689. As long as a close approximation (within 
the quantization error) is reachable by the sum of the last 
three weights, an error in the first bit decision will be 

inconsequential. The same idea applies to later bit 
decisions, with the main difference that the sum of the 
remaining weights, and therefore the correction range, is 
decreasing with each step. Detailed calculations of the 
tolerable decision errors for a variety of bit configurations 
are tabulated in [3]. For example, in a 10-bit, 12-step 
ADC, the tolerable decision errors normalized to the 
quantization step size are: 90, 51, 28, 16, 9, 5, 3, 1, 1 and 
0 for all remaining decisions. 

In recent literature, it is often overlooked that the 
concept of using  < 2 (or “radix < 2”) has been used in 
hardware implementations long before detailed 
mathematical results – such as Daubechies’ 2002 paper 
[4] – were available. In the context of SAR ADCs, using a 
reduced radix was first proposed in 1981 [6], and further 
popularized in [7], [8]. The latter reference is sometimes 
cited as the “first” even though it appeared more than 
twenty years after the original idea. What is even less 
known is that the original idea of using redundancy dates 
back to 1964 [1]. In this work, redundancy was introduced 
not by using  < 2, but instead by creating extra decision 
levels in (3). We will summarize this idea and other 
approaches that have evolved in the context of hardware 
design in the following section. 
 

3. REDUNDANCY IN TODAY’S DESIGNS 

A. Radix=2 Designs with Redundant Decision Levels 

In the original work of [1], one extra decision level 
was used to create overlapping trajectories as in Figure 2. 
The design resolved two bits per step, which normally 
requires three decision levels. The added fourth decision 
level allowed the algorithm to absorb large comparison 
errors, enumerated in more detail in [1]. 

The idea of introducing redundant decision levels is 
still used today, and most widely exploited in pipeline 
ADCs [9], which can be described by a set of equations 
similar to (1) – (4). In this context, designers speak of a 
“1.5-bit” quantizer when one extra level is added to (3), 
since log2(2+1) = 1.58. The concept is also called 
“redundant signed digit (RSD)” conversion [10], akin to 
the redundant binary number system sometimes used in 
digital adders. The 1.5-bit concept has been re-introduced 
recently in SAR conversion, as described in [11]. 

B. Radix=2 Designs with Redundant Steps 

Redundancy primarily helps absorb errors in the bit 
decisions (equation (3)). However, it is important to 
distinguish between two different ways in which such 
errors may be introduced. The first and most obvious is a 
direct error in the evaluation of the inequality. The second 
possibility is an error in xk, which may occur in hardware 
realizations due to the finite speed at which (2) is 
computed (“DAC settling error” – see also Section IV). 
Such errors can be tolerated by designs with redundant 
decision levels, but it was shown in [12] that the 
introduction of one redundant step (and no extra decision 
levels) is also sufficient. The idea exploits the exponential 
nature of the settling errors and the fact that the impact of 
the errors reduces from cycle to cycle. 

 

Figure 1: Graphical illustration of ideal sequential A/D 
conversion with 4-bit resolution. The algorithm resolves 

4 bits using 4 steps (no redundancy). 
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Figure 2: Graphical illustration of sequential A/D 
conversion with redundancy. The conversion resolves 3 

bits using 4 steps. 
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The work of [13] uses one redundant step in an even 
more intriguing way to mitigate the impact of random 
decision errors (“thermal noise”). It is noted that at most 
two out of all decisions (equation (2)) must resolve a very 
small difference that may be corrupted by noise. One of 
these critical decisions must be the last one, and the other 
one can be in any prior cycle. As shown in [13], this latter 
error can be elegantly corrected by introducing one extra 
conversion step. In hardware, this feature is then exploited 
by running all but the last two conversions with a very 
low-energy (but noisy) comparator, and expending 
significant energy to overcome noise only in the final 
decisions. 

C. Radix<2 Designs 

As discussed previously, the idea of using a radix of 
less than two (“beta-expansion”) goes back to 1981 and is 
still used today [3]. One common challenge to this form of 
redundancy is that the radix must be known precisely to 
construct the proper conversion result. Of course, the 
radix must also be precisely set in radix = 2 topologies, 
but here this is naturally achieved by employing integer 
multiples of well-matched and nominally identical 
integrated circuit components. 

In practice, the radix is typically measured using some 
form of calibration. In [14], it was shown that the radix 
() can be estimated by comparing the output of the 
converter for the inputs x and 1-x. In a practical 
realization, such a calibration step would have to be 
performed with controlled input signals, thus interrupting 
the normal conversion operation. Such an approach is 
commonly called foreground or start-up calibration. 

Reference [15] describes a method by which the radix 
can be continuously measured (“in the background”) 
without interrupting normal conversion. The method is 
based on running two conversions of the same input with 
different additive perturbations. Based on the difference 
between the two results and its ideal value, an LMS loop 
updates the radix in the digital bit mapping until 
convergence is achieved. At first glance it seems 
expensive to run extra conversions for the sole purpose of 
measuring of the radix. However, the two measurements 
allow averaging of the thermal noise and hence the 
calibration is energy neutral (to first order). 

With redundancy and radix calibration in place, the 
only remaining precision requirement in the hardware is 
that the computation of (2) must be sufficiently linear. 
However, as pointed out in [16], even nonlinearity could 
be compensated through calibration. Still, in typical 
realizations of SAR ADCs, where the computation of (2) 
relies on high-quality passive components, such issues 
have not yet proven to be significant. The situation is 
different in pipeline ADCs, where digital linearization 
techniques have been proposed to combat nonlinear 
effects in passives [17] and amplifiers [18]. 

5. A CLOSER LOOK AT DAC SETTLING ERRORS 

Figure 3 shows a conceptional block diagram of a 
typical SAR ADC. The comparison level xk in (2) is 
generated by a D/A converter, which is controlled by 
digital circuitry that implements the approximation 

algorithm. Since the speed of practical D/A converters is 
finite, xk is usually not fully settled at the time the bit 
decision is made and this can lead to bit errors. 
Fortunately, and as already mentioned above, such errors 
are inconsequential with sufficient redundancy in place. 
The DAC error is indistinguishable from errors made in 
the quantizer itself. Especially for high-speed designs, this 
feature is being heavily exploited in today’s designs [12]. 

In this context, it is interesting to invoke a comparison 
to pipeline ADCs, which also employ redundancy in their 
underlying quantizers. Figure 4(a) shows a block diagram 
of a pipeline ADC, which can be conceptually thought of 
as a “loop-unrolled” version of a SAR ADC. In other 
words, instead of performing (2) sequentially, the 
hardware is parallelized and pipelined to increase 
throughput. An interesting and important difference 
between the shown pipelined architecture and a SAR 
ADC is that DAC settling errors cannot be absorbed 
through redundancy. The reason is that the settling error is 
sampled and forward-propagated such that it results in a 
direct error that has no further time to decay. A clever 
workaround for this problem was only proposed recently 
in [19]. As shown in Figure 4(b), this design uses a 
feedforward path, which, after some delay injects a 
precise version of the fully settled DAC signal into the 
following stage. The feedforward path has extra time to 
settle, since its output is only needed after the succeeding 
stage’s quantizer and DAC have processed their inputs. 
With this modification, the pipelined architecture can 
potentially benefit as much from redundancy as a SAR 
ADC, and high conversion rates are possible with 
relatively slow sub-D/A converters and amplifiers. 

6. CONCLUSION 

This paper has reviewed the state-of-the-art and 
historical background on the use of redundancy in SAR 
A/D converters. A general observation for most of the 
work in this area is that the practical exploration of ideas 
typically occurs well before the underlying mathematics 
has been thoroughly described. The development of a 
holistic theoretical framework that captures all variants of 
redundancy would be beneficial to the field. 
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Figure 4: (a) Conventional pipeline ADC. (b) Addition of a feedforward path that allows the absorption of DAC settling 
errors in the converter's redundancy. 
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