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Abstract—This paper discusses sampling system design for from 2D frames [5], thus using compressive tomography to
estimation of multidimensional objects from lower dimensonal reconstruct time itself.

measurements. We consider examples in geometric, diffreime, While the object distributionf(z) is by definition dis-
coherence, spectral and temporal tomography. Compressivto- tributed over contin m rements ultimatelsiso
mography reduces or eliminates conventional tradeoffs beteen u_ edove CO ous space, . easurements u a 3'
temporal and spatial resolution. of discrete digital data. There is no fundamental requirgme
that discrete measurements be indexed by a continous leariab
I. INTRODUCTION Standard compressive sampling models assume independent

ek%r_nels for each measurement. Unfortunately, completely i
mation of N' sianal values from/ measurements fav/ < N gependent kernels are difficult or impossible to implemant o
9 ' measurements embedded in continuous physical space. Due in

While this definition has been highly useful and successf . ) . .
. : . . e part to this challenge, Candes’ early analysis of compressi
in many sensing and imaging applications, an alternatiye

definition is of equal utlity in tomographic imaging. Tomog_omography focused on discrete subsampling of the temporal

raphy most commonly consists of imaging 3D objects frorgngggg]oﬁf[gadon space with continuous sampling in each

measurements distributed over 1D or 2D sensor arrays. dypic My group’s initial theoretical studies of compressive to-

tomographic systems may be described by integral equaﬂoﬁggraphy focused on the use of multidimensional reference
of the form

structures to enable random or decorrelated measurement ov

9(y) Z/f(fﬂ)h(%y)dfﬂ (1) a continuous space [7]. However, most subsequent efforts
to implement practical compressive tomography may be de-

wherer € RV andy € RM. One may define “compressivescribed in the context of three basic coding strategies

tomography” as estimation ¢f(z) from g(y) in the case that 1) Measurement space codingThe standard model for in-

M < N. creasing measurement dimensionality with time involves

Tomographic systems typically use sensor arrays embedded varying the the measurement kernel to obtain

on the boundary or surface of a volume under observation.

In fan beam tomography, for example, a linear detector array 9(y,t) = /f(@h(ir, y,t)dz (2)

measures attenuation of rays through a 2D object space. In

cone beam tomography, a planar detector arrray measures . .

rays projected through a 3D volume. Conventional tomogyaph in a snapshot to obtain

overcomes the dimensional mlsn_watch be_tween the object and (y) = /g(y,t)C(y,t)dt _ /C(y,t)f(m)h(x,y,t)dxdt

measurement spaces by varying illumination and sensor geom

etry as a function of time, thereby increasing the dimension , ) ) ,(3) .

of the measurement space by 1. Thus in conventional systems Where C(y,?) is a code applied to each time slice in

M = N — 1 for measurements taken at a fixed time, but ~ measurement spacé\(y, ¢) is designed to allow “code

M — N when time is taken into account. division multiple access” (CDMA) such tha{y, t) can

The most unfortunate aspect of the conventional approach geb_|solated frorr%(_y). dul he obiect densi .
is that it requires that the object remain static as measemésn ) Object space codingnodulates the object density prior

are collected over time. Over the past several years, my to measurement to obtain the forward model

group has applied compressive sampling theory to implement g(y) = /f(m)C(m)h(x,y)d:c (4)
shapshot compressive tomography. For example, we have

shown that 3D hyperspectral [1], diffraction [2] and x-ray Again, C(z) enables the use of CDMA to increase the
scatter [3] images may be reconstructed from 2D data. We effective dimensionality of the measurements.

have also analyzed compressive sampling for reconstructio 3) Transform subsampling expands the subsampling strat-
of 3D objects with conventional optics [4]. Most recentlye w egy of [6] to optimize which portions of the transform
have shown that 3D video data cubes may be constructed space measured.

Compressive measurement is generally defined as the

Measurement space coding multiplexes diverse kernels

S=t
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CDMA is, of course, most commonly understood in thand inversion is over constrained. The challenge of geametr
context of multiuser communications. CDMA considers theamography is that it is not possible to simultaneously dis-
case that a set of relatively low frequency signgl§) must criminate all rays passing through Typical detectors have
communicate over the same channel. Multiplication of eaecto mechanism for discriminating rays and simple intetraée t
signal with an independent high frequency cadét) enables total irradiance over all rays passing through the detemiort.
one to isolate each signal even when the overall transmitt€dnventional tomographic imagers overcome this problem by
data isg(t) = >, fi(t)Ci(t). This is achieved by assumingensuring that only 1 ray passes through each measurement
that the codes are orthogonal over short time windows sughbint in each measurement time. This is most often achieved
that by illuminating with a collimated pencil, fan or cone beam

source. Under this scenari®,is a single valued function af

t
/t—Tg(t/)Cj (t')dt' = Z fi(t) / Ci(t"C;(t")dt' = f;(t)  and the measurement is

(5) gly,t) = /f(y+a9(y,t))da (7)

In effect, coding turns the 1D measurement over time into a
2D meas_urement over time and transmltter.mde).(. In the sa ?y c S¥-1 andt € R. A dimensional match between
way, coding in tomography systems effectively increases t T . i

: . . T measurements and the object is achieved by charijing)
dimensionality of the measurements. The question “What 1S function of time
the maximum bandwidth of (¢) relative to the bandwidth of :

C(t) such that this dimensionality increase can be achieved isEaCh of coding strategies 1-3 may be implemented in

a central issue in compressive sampling theory. geometric tomography. Measurement space coding is applied

The goal of the remainder of this paper is to relate thege X "&Y scatter imaging by placing a coded aperture between

X . ; . e scattering target and the measurement plane. Where con-
abstract coding strategies to practical tomographic immage ~ © g : : :
ventional scatter imaging scans a colimator as function of

Tomographic system design is inherently an integratedsgns, . . =
grap y g y 9 iod time, coding allows distinct range, cross range and monmentu

and processing challenge by which physical and geometric . ) .
pra 9 ge by pnysica geomeliices to be multiplexed and reconstructed from a single tim
constraints must be matched to mathematical conditionin ) .
. . . ) .step [3], [10]. Measurement space coding may also be applied
and algorithms. The next section reviews the basic physical . : ) 2
using a coded aperture with multiple illumination sources.

structure of tomographic imagers and dicusses how codi . . . : .
. grap g€l [[Rmination angle-based code shifts allow disambiguatid
strategies 1-3 are implemented in these systems. . e .
the sources and simultaneous aquisition of multiple source
Il. FIELD MODELS AND CODING data [11]. Multisource coding in combination with scatter

While Eqn. (1) might describe many different measuréaging may also be understood as object space coding.
ment systems, the underlying concept that measurements B@dher than using coded aperture shadows to disambiguate
objects are distributed over continous spaces linked bySgatter sources, one may use structured illumination te cod
continous kernel uniquely describes remote sensing sgsteffatter position of distributed targets. Finally, as naibdve,

The transformation from object to measurement is mediatédPsampling of multiple source data is an example of trans-
by radiation fields propagating between the two spaces.aVhiPrm subsampling. While in [6], this subsampling takes the
“tomographic imaging” in its most general sense refers fgrm of d|scont|nou_s selection of continuous subspgceh@f_t
systems as diverse as MRI and electron microscopy, m&&don transformation, more effective compression is obthi
analyses of computed tomographic imaging focus specyicapy combining mulitsource illumination with coded apertire
on imaging using radiating fields [8]. reference structures or collimation filters .to more randpm_l

Radiation fields are commonly described by (1) geometri@mple Radon space. As suggested by this survey of practical
models, under which the fields propagate as nondiffractifategies, detailed analysis of the coding strategy diépen
rays, (2) diffraction models, under which the fields progagalOth on physical feasibility, object priors and mathensitic
as waves and (3) coherence models, which generalize w&g/cture.
models to account for quantum noise and measurement chaiPespite all the complexity of wave mechanics, the most im-
acteristics [9]. Each field model is most applicable in sfieci Mediate difference between geometric tomography ancadiffr
contexts, corresponds to specific measureable featuregsantion tomography is that the diffraction sample surfacegraés
amenable to specific coding strategies. rather than via line integrals. More substantive diffeesnc

For geometric tomography, attenuation or scatter of raysagse from object field-interaction models, typical objedbrs

the basic measureable quantity. Specifically, one measuregind the use of time to measure space. Diffraction tomography
including radar, millimeter wave and terahertz imagingrail

g(y,0) = /f(y + af)da (6) sound and optical holography, most often considers seatter
radiation rather than attenuation or primary sources. Utide
wherey € SV~! is a point on a boundary enclosing theBorn approximation, the scattered field for single planeavav
object and¥ € SV~ is the direction vector for a ray passsingllumination samples a spherical shell in the Fourier spaice
throughy. For N > 2, the dimensionality of the potentialthe object density [12]. A single measurement corresponds t
ray measurement spacé/ = 2N — 2, is greater thanV a point in the Fourier space in this case.
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From a practical perspective, the use of phase delay or timme distributions onto measurement planes [9]. Objectespac
of flight to measure range is the most unique and powerful asodulation [4] and focal stacking (sweeping focal paramsete
pect of diffraction tomography. This technique enablesoapt during exposure) may be used to overcome this limitation.
coherence tomography (OCT), which measures spatial rar@@mpressive tomography of random volume sources is much
with resolution proportional to spectral bandwidth ratttean more challenging that geometric or diffraction tomography
aperture size. Compressive OCT has been considered in dewever, and remains an active research challenge.
eral studies using transform subsampling [13]. Time of fligh
from a monostatic transceiver integrates the object deosit
a sphere surrounding the transceiver with a range propaitio The reader may be surprised to complete an entire article on
to the observation time. Measurement of a family of spherfynographic imaging without encountering a single image. T
obtained by translating the transceiver obtains a Raniken-IMYy knowledge, however, this is the first print article to épl
transformation of the volume. Bistatic or multistatic sys itly consider compressive tomography as defined in Eqn. (1).
sample integrals over hyperbolic surfaces between enaittdr AS such | hope that the reader will find the intellectual eiserc
receiver positions. of mapping this definition onto essentially the complete gam

As with geometric tomography, strategies 1-3 may be agf remote sensing systems sufficiently fascinating as teeagr
plied in compressive diffraction tomography. While | am noihat a few simple images of traditional phantoms would only
aware of any examples of measurement space coding W a distraction. The conventional concept of an image as a
coherent waves, the use of a metamaterial transceiver atecre?D object that can be captured on a focal plane and displayed
structured illumination [14] is an example of compressiv® an article is an artifact of analog image processing. In
tomography using object space coding. 3D object estimatife modern world of computational and compressive imaging,
from Fourier space manifolds in [15], [16] is an examplé” images are multidimensional and all imaging systems are

IIl. CONCLUSION

of tranform subsampling, although disjoint or randomize@mographic.

subsampling as described for 2D images in [17] may be
considered more sample efficient. Accounting for the unique
physical priors arising from diffuse and specular reflattid
coherent radiation is the most challenging aspect of difioa
tomography, however. (2]
The scattered field on the surface of a diffuse reflector
is a complex Gaussian random variable. Since the measi
of the field is 0, estimation of the mean is an ineffective
imaging strategy. The magnitude of the field is exponerytiall[4]
distributed, estimation of the magnitude lead to speckled
images. Given that the field is random and uncorrelated ih ead®
pixel, the field over a 2D image is not generally compressible
Compressive tomography is therefore best implemented kL
building a forward model on the nonnegative object scatteri
density, which corresponds to the variance of the Gaussian
random process [18]. Whether the scatter is diffuse or dpecu [7]
however, one notes that diffraction tomography tends to be
most useful in imaging interfaces and surfaces rather th
continuous volumes. While the reason for this may be simplg]
that volume imaging is too noisy and random to allow imag©]
ing to occur, design of compressive diffraction tomography
systems would most effectively build on the assumption that]
the object consists exclusively of surfaces. This priorustho
enable highly compressive and super-resolved estimation[ﬁ]
even diffuse scatters and is thus a worthy area for ongoing
research. [13]
Optical coherence functions, most typically consisting of
the cross spectral density, describe fields radiated byorand[14]
natural sources. While one may apply interferometric meésho
to directly sample the cross spectral density for transfsmr 45
sampling based compressive tomography [19], such methods
are ill-conditioned for complex sources. Focal imaginghs t
only mathematically well conditioned strategy for measuréls]
ment of random sources but is incapable of mapping vol-
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