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Abstract—This paper discusses sampling system design for
estimation of multidimensional objects from lower dimensional
measurements. We consider examples in geometric, diffractive,
coherence, spectral and temporal tomography. Compressiveto-
mography reduces or eliminates conventional tradeoffs between
temporal and spatial resolution.

I. I NTRODUCTION

Compressive measurement is generally defined as the esti-
mation ofN signal values fromM measurements forM < N .
While this definition has been highly useful and successful
in many sensing and imaging applications, an alternative
definition is of equal utlity in tomographic imaging. Tomog-
raphy most commonly consists of imaging 3D objects from
measurements distributed over 1D or 2D sensor arrays. Typical
tomographic systems may be described by integral equations
of the form

g(y) =

∫
f(x)h(x, y)dx (1)

wherex ∈ R
N and y ∈ R

M . One may define “compressive
tomography” as estimation off(x) from g(y) in the case that
M < N .

Tomographic systems typically use sensor arrays embedded
on the boundary or surface of a volume under observation.
In fan beam tomography, for example, a linear detector array
measures attenuation of rays through a 2D object space. In
cone beam tomography, a planar detector arrray measures
rays projected through a 3D volume. Conventional tomography
overcomes the dimensional mismatch between the object and
measurement spaces by varying illumination and sensor geom-
etry as a function of time, thereby increasing the dimension
of the measurement space by 1. Thus in conventional systems
M = N − 1 for measurements taken at a fixed time, but
M = N when time is taken into account.

The most unfortunate aspect of the conventional approach
is that it requires that the object remain static as measurements
are collected over time. Over the past several years, my
group has applied compressive sampling theory to implement
snapshot compressive tomography. For example, we have
shown that 3D hyperspectral [1], diffraction [2] and x-ray
scatter [3] images may be reconstructed from 2D data. We
have also analyzed compressive sampling for reconstruction
of 3D objects with conventional optics [4]. Most recently, we
have shown that 3D video data cubes may be constructed

from 2D frames [5], thus using compressive tomography to
reconstruct time itself.

While the object distributionf(x) is by definition dis-
tributed over continous space, measurements ultimately consist
of discrete digital data. There is no fundamental requirement
that discrete measurements be indexed by a continous variable.
Standard compressive sampling models assume independent
kernels for each measurement. Unfortunately, completely in-
dependent kernels are difficult or impossible to implement on
measurements embedded in continuous physical space. Due in
part to this challenge, Candes’ early analysis of compressive
tomography focused on discrete subsampling of the temporal
portion of Radon space with continuous sampling in each
snapshot [6].

My group’s initial theoretical studies of compressive to-
mography focused on the use of multidimensional reference
structures to enable random or decorrelated measurement over
a continuous space [7]. However, most subsequent efforts
to implement practical compressive tomography may be de-
scribed in the context of three basic coding strategies

1) Measurement space coding.The standard model for in-
creasing measurement dimensionality with time involves
varying the the measurement kernel to obtain

g(y, t) =

∫
f(x)h(x, y, t)dx (2)

Measurement space coding multiplexes diverse kernels
in a snapshot to obtain

g̃(y) =

∫
g(y, t)C(y, t)dt =

∫
C(y, t)f(x)h(x, y, t)dxdt

(3)
whereC(y, t) is a code applied to each time slice in
measurement space.C(y, t) is designed to allow “code
division multiple access” (CDMA) such thatg(y, t) can
be isolated from̃g(y).

2) Object space codingmodulates the object density prior
to measurement to obtain the forward model

g(y) =

∫
f(x)C(x)h(x, y)dx (4)

Again, C(x) enables the use of CDMA to increase the
effective dimensionality of the measurements.

3) Transform subsamplingexpands the subsampling strat-
egy of [6] to optimize which portions of the transform
space measured.
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CDMA is, of course, most commonly understood in the
context of multiuser communications. CDMA considers the
case that a set of relatively low frequency signalsfi(t) must
communicate over the same channel. Multiplication of each
signal with an independent high frequency codeCi(t) enables
one to isolate each signal even when the overall transmitted
data isg(t) =

∑
i fi(t)Ci(t). This is achieved by assuming

that the codes are orthogonal over short time windows such
that∫ t

t−T

g(t′)Cj(t
′)dt′ =

∑
i

fi(t)

∫
Ci(t

′)Cj(t
′)dt′ = fj(t)

(5)
In effect, coding turns the 1D measurement over time into a
2D measurement over time and transmitter index. In the same
way, coding in tomography systems effectively increases the
dimensionality of the measurements. The question “What is
the maximum bandwidth off(t) relative to the bandwidth of
C(t) such that this dimensionality increase can be achieved is
a central issue in compressive sampling theory.

The goal of the remainder of this paper is to relate these
abstract coding strategies to practical tomographic imagers.
Tomographic system design is inherently an integrated sensing
and processing challenge by which physical and geometric
constraints must be matched to mathematical conditioning
and algorithms. The next section reviews the basic physical
structure of tomographic imagers and dicusses how coding
strategies 1-3 are implemented in these systems.

II. F IELD MODELS AND CODING

While Eqn. (1) might describe many different measure-
ment systems, the underlying concept that measurements and
objects are distributed over continous spaces linked by a
continous kernel uniquely describes remote sensing systems.
The transformation from object to measurement is mediated
by radiation fields propagating between the two spaces. While
“tomographic imaging” in its most general sense refers to
systems as diverse as MRI and electron microscopy, most
analyses of computed tomographic imaging focus specifically
on imaging using radiating fields [8].

Radiation fields are commonly described by (1) geometric
models, under which the fields propagate as nondiffracting
rays, (2) diffraction models, under which the fields propagate
as waves and (3) coherence models, which generalize wave
models to account for quantum noise and measurement char-
acteristics [9]. Each field model is most applicable in specific
contexts, corresponds to specific measureable features andis
amenable to specific coding strategies.

For geometric tomography, attenuation or scatter of rays is
the basic measureable quantity. Specifically, one measures

g(y, θ) =

∫
f(y + αθ)dα (6)

where y ∈ S
N−1 is a point on a boundary enclosing the

object andθ ∈ S
N−1 is the direction vector for a ray passsing

through y. For N > 2, the dimensionality of the potential
ray measurement space,M = 2N − 2, is greater thanN

and inversion is over constrained. The challenge of geometric
tomography is that it is not possible to simultaneously dis-
criminate all rays passing throughy. Typical detectors have
no mechanism for discriminating rays and simple intetrate the
total irradiance over all rays passing through the detectorpoint.
Conventional tomographic imagers overcome this problem by
ensuring that only 1 ray passes through each measurement
point in each measurement time. This is most often achieved
by illuminating with a collimated pencil, fan or cone beam
source. Under this scenario,θ is a single valued function ofy
and the measurement is

g(y, t) =

∫
f (y + αθ(y, t)) dα (7)

for y ∈ S
N−1 and t ∈ R. A dimensional match between

measurements and the object is achieved by changingθ(y, t)
as a function of time.

Each of coding strategies 1-3 may be implemented in
geometric tomography. Measurement space coding is applied
in x-ray scatter imaging by placing a coded aperture between
the scattering target and the measurement plane. Where con-
ventional scatter imaging scans a colimator as function of
time, coding allows distinct range, cross range and momentum
slices to be multiplexed and reconstructed from a single time
step [3], [10]. Measurement space coding may also be applied
using a coded aperture with multiple illumination sources.
Illumination angle-based code shifts allow disambiguation of
the sources and simultaneous aquisition of multiple source
data [11]. Multisource coding in combination with scatter
imaging may also be understood as object space coding.
Rather than using coded aperture shadows to disambiguate
scatter sources, one may use structured illumination to code
scatter position of distributed targets. Finally, as notedabove,
subsampling of multiple source data is an example of trans-
form subsampling. While in [6], this subsampling takes the
form of discontinous selection of continuous subspaces of the
Radon transformation, more effective compression is obtained
by combining mulitsource illumination with coded apertures,
reference structures or collimation filters to more randomly
sample Radon space. As suggested by this survey of practical
strategies, detailed analysis of the coding strategy depends
both on physical feasibility, object priors and mathematical
structure.

Despite all the complexity of wave mechanics, the most im-
mediate difference between geometric tomography and diffrac-
tion tomography is that the diffraction sample surface integrals
rather than via line integrals. More substantive differences
arise from object field-interaction models, typical objectpriors
and the use of time to measure space. Diffraction tomography,
including radar, millimeter wave and terahertz imaging, ultra-
sound and optical holography, most often considers scattered
radiation rather than attenuation or primary sources. Under the
Born approximation, the scattered field for single plane wave
illumination samples a spherical shell in the Fourier spaceof
the object density [12]. A single measurement corresponds to
a point in the Fourier space in this case.
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From a practical perspective, the use of phase delay or time
of flight to measure range is the most unique and powerful as-
pect of diffraction tomography. This technique enables optical
coherence tomography (OCT), which measures spatial range
with resolution proportional to spectral bandwidth ratherthan
aperture size. Compressive OCT has been considered in sev-
eral studies using transform subsampling [13]. Time of flight
from a monostatic transceiver integrates the object density on
a sphere surrounding the transceiver with a range proportional
to the observation time. Measurement of a family of spheres
obtained by translating the transceiver obtains a Randon-like
transformation of the volume. Bistatic or multistatic systems
sample integrals over hyperbolic surfaces between emitterand
receiver positions.

As with geometric tomography, strategies 1-3 may be ap-
plied in compressive diffraction tomography. While I am not
aware of any examples of measurement space coding with
coherent waves, the use of a metamaterial transceiver to create
structured illumination [14] is an example of compressive
tomography using object space coding. 3D object estimation
from Fourier space manifolds in [15], [16] is an example
of tranform subsampling, although disjoint or randomized
subsampling as described for 2D images in [17] may be
considered more sample efficient. Accounting for the unique
physical priors arising from diffuse and specular reflection of
coherent radiation is the most challenging aspect of diffraction
tomography, however.

The scattered field on the surface of a diffuse reflector
is a complex Gaussian random variable. Since the mean
of the field is 0, estimation of the mean is an ineffective
imaging strategy. The magnitude of the field is exponentially
distributed, estimation of the magnitude lead to speckled
images. Given that the field is random and uncorrelated in each
pixel, the field over a 2D image is not generally compressible.
Compressive tomography is therefore best implemented by
building a forward model on the nonnegative object scattering
density, which corresponds to the variance of the Gaussian
random process [18]. Whether the scatter is diffuse or specular,
however, one notes that diffraction tomography tends to be
most useful in imaging interfaces and surfaces rather than
continuous volumes. While the reason for this may be simply
that volume imaging is too noisy and random to allow imag-
ing to occur, design of compressive diffraction tomography
systems would most effectively build on the assumption that
the object consists exclusively of surfaces. This prior should
enable highly compressive and super-resolved estimation of
even diffuse scatters and is thus a worthy area for ongoing
research.

Optical coherence functions, most typically consisting of
the cross spectral density, describe fields radiated by random
natural sources. While one may apply interferometric methods
to directly sample the cross spectral density for transformsub-
sampling based compressive tomography [19], such methods
are ill-conditioned for complex sources. Focal imaging is the
only mathematically well conditioned strategy for measure-
ment of random sources but is incapable of mapping vol-

ume distributions onto measurement planes [9]. Object space
modulation [4] and focal stacking (sweeping focal parameters
during exposure) may be used to overcome this limitation.
Compressive tomography of random volume sources is much
more challenging that geometric or diffraction tomography,
however, and remains an active research challenge.

III. C ONCLUSION

The reader may be surprised to complete an entire article on
tomographic imaging without encountering a single image. To
my knowledge, however, this is the first print article to explic-
itly consider compressive tomography as defined in Eqn. (1).
As such I hope that the reader will find the intellectual exercise
of mapping this definition onto essentially the complete gamut
of remote sensing systems sufficiently fascinating as to agree
that a few simple images of traditional phantoms would only
be a distraction. The conventional concept of an image as a
2D object that can be captured on a focal plane and displayed
in an article is an artifact of analog image processing. In
the modern world of computational and compressive imaging,
all images are multidimensional and all imaging systems are
tomographic.
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