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Automatic speech recognition systems present performance that degrades dramatically in adverse 
situations, in the presence of noise or with different speakers. These degradations are due to the 
differences that occur between training and testing conditions. Speech recognition in adverse 
conditions has received increased attention during the last decade, since noise resistance has become 
one of the major bottlenecks for practical use of speech recognizers in real life. This paper reviews 
some of the methods proposed so far at the various stages of the recognition process in order to 
improve the robustness of the systems in real life conditions. 
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1. INTRODUCTION 

The performance of automatic speech recognition systems degrades dramatically in adverse situations, 
especially in the presence of noise or with different speakers. In particular, problems are created by the 
differences that may occur between training and testing conditions (noise level as measured by the signal-to-
noise ratio (SNR), distance to the microphone and orientation, and also differences in speakers, etc.). 

Speech recognition in adverse conditions has received increased attention for several years since noise 
resistance has become one of the major bottlenecks for practical use of speech recognizers in real life [27]. 
The methods proposed so far in order to improve the robustness of systems fall into different, non exclusive, 
categories: signal acquisition and parameterization, reference modeling, and adaptation techniques. After 
having briefly recalled the effects of noise on speech, we present some of the most common methods 
proposed in the literature to increase the robustness of systems. 

2. EFFECT OF NOISE ON SPEECH 

The various kinds of noise cause substantial alterations to the speech signal. The main sources of 
speech variation can be classified into three main categories: 

• addition of ambient noise: it is usually admitted that a recorded speech signal is the sum of the 
speech produced by a speaker and the ambient noise. This noise is usually a colored noise and its 
structure can vary significantly, according to the source: office machinery (typewriters, workstations, 
etc.), human conversations (babble noise), car (coming from engine, wind, tires, road, etc.), plane 
cockpit, industrial plant, etc; 
• distortion of the signal: the speech signal undergoes various distortions that may affect its frequency 
structure and phase in a usually non-linear way. Such distortions result from the convolution of the 
speech signal with a particular system. They can for instance be produced by room reverberation. 
Microphone transduction can also distort the speech spectrum in a way specific to each type of 
microphone and mounting position. Therefore, the use of different microphones for training and 
testing can lead to significant spectrum mismatch, and causes important discrepancies in recognition. 
Finally, in telephony applications, the transmission channel can also cause speech distortions, mainly 
through a frequency-dependent attenuation. The resulting distortions in the speech spectrum, or 
spectral tilt, are a major cause of performance degradation in automatic speech recognition. Some of 
the methods proposed so far are able to carry out simultaneously a compensation of noise and spectral 
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tilt. Such a joint compensation has been shown as more effective than a combination of independent 
compensators; 
• variations in articulation: a speaker can be affected in his speaking manner by different factors like 
stress, emotion, physiological state, etc. But the most important factor is perhaps the influence of a 
noisy environment. When speakers speak under heavy noise and/or stress conditions, they 
dramatically change their utterance in terms of formant frequencies, pitch, sound duration, etc. This 
Lombard effect has a strong influence on the performances of a speech recognizer, even if speakers 
can be trained to some extent to avoid to some extent Lombard speech in noisy environments. 

3. OVERVIEW OF PROBLEMS AND SOLUTIONS 

Most present speech recognition systems rely on a statistical framework. The basic idea is to compute 
the conditional probability P (W/O) of recognizing a sequence of words W for an acoustic input signal O, 
thanks to Bayes formula. This computation involves two types of models: 

 - acoustic models, usually under the form of Hidden Markov Models (HMM), 
 - language models, usually under the form of n-grams models. 

This paper is concerned with the increase in robustness of acoustic models. Increasing the robustness of 
language models, especially with adaptation techniques is also an important issue, but that lies outside the 
scope of this paper (see for instance [6] for a review of the problem). 
The difficulties encountered in the design of a speech recognition system come from the various effects of 
noise on speech described in section 2. They result in two major phenomena: 
 • the degradation of the performance of an automatic speech recognition system if the learning and 

testing conditions are different. For example, it has been found a degradation of an order of 
magnitude in the error rate for an isolated word recognizer when trained with clean speech and tested 
with noisy utterances at a signal-to-noise ratio of 18 dB. This requires the improvement of the overall 
robustness of speech recognition, because the simple solution of having the same conditions for 
training and testing is seldom affordable and usually unrealistic; 

 • the modification of sounds pronounced in a noisy environment (the already mentioned Lombard 
effect). This effect is highly dependent upon the speaker, the context and the level of noise, and is 
thus very difficult to quantify and to model. Its main effects are increases of fundamental frequency 
and of first and second formants, changes in the spectral tilt, increases in formant amplitude, 
variations in phoneme and word durations, etc. Several experiments have confirmed the large 
degradation of speech recognition performance due to the Lombard effect. 

In brief, the mismatch between training and testing patterns is the major problem to deal with in 
adverse, real life conditions of speech recognition. A large number of methods have been proposed to cope 
with these problems, even though none is totally satisfactory. These methods are used at some steps in the 
basic sequence of speech recognition processing. Of course, the different methods are not exclusive, and can 
be combined in order to obtain satisfactory performance. 

4. PREPROCESSING AND PARAMETERIZATION 

4.1. Position of the problem 

The overall performance of a speech recognizer highly depends upon the quality and robustness of the 
acoustic and sometimes phonetic features extracted from the speech wave as a front end of recognition 
algorithms. Therefore a major effort has been devoted to this problem. 

All existing methods are not easily usable in adverse conditions. For instance, basic LPC analysis is 
very sensitive to noise. New models, or adapted versions of classical models, are thus necessary. 

Recently, an international effort of standardization within the Aurora ETSI group has resulted in the 
selection of a new standard for a robust front-end. The system that was selected features an optimal 
combination of noise reduction, SNR dependent waveform processing, cepstrum calculation, blind 
equalization, and voice activity detection [33]. 
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4.2. Voice activity detection 

Substantial improvements in recognition accuracy can be obtained by introducing an accurate Voice 
Activity Detector, robust to noisy conditions. Linear estimation and logistic regression [44] are among the 
most popular methods for computing a probability of the presence of speech in a signal. Other proposed 
approaches are based on Higher Order Statistics (HOS), log likelihood ratio, estimation of the a priori 
speech absence probability controlled by the minima values of the smoothed power spectrum of the noisy 
signal, Laplacian Gaussian model.  

An Artificial Neural Network (ANN) has also been proposed for computing a speech/no-speech 
probability for each speech frame [5], scaled and used as an additional observation for acoustic Hidden 
Markov Models. Another ANN has also been proposed for computing a Noise Presence Probability in 
absence of speech with two major differences [18]. This probability is used in a non-linear gain function that 
depends on the estimated strength of the non-speech state of the acoustic model. The function is used in a 
hybrid ANN/HMM ASR system to modify the non-speech posterior probability computed by the ANN of the 
hybrid system. As a consequence, the posterior probabilities of all the other phone units are simply 
normalized, without affecting their relative values computed with a model trained with a discriminative 
learning process. In this way, the amount of speech/non-speech confusion is significantly reduced. 

4.3. Speech Enhancement 

As a first step in the recognition process, speech enhancement techniques tend to suppress the noise 
that corrupts the speech signal. Besides these methods using several microphones, many different types of 
speech enhancement systems using a single microphone have been proposed and tested. All these systems 
are based on techniques designed to recover the clean speech signal by enhancing the signal-to-noise ratio. 
The performance depends upon the type of noise that corrupts speech and the information they require about 
noise. It should be noted at this point that the increase of SNR will improve the quality of the speech signal 
without always improving its intelligibility. Therefore, as far as speech recognition is concerned, a trade-off 
has to be found between SNR improvement and recognition accuracy. Moreover, speech enhancement 
techniques have initially mainly dealt with the improvement of speech quality and intelligibility for human 
listeners. Even though the problem is not totally similar, these techniques will also improve automatic 
recognition. 

Several types of methods are used for speech enhancement: 
 • noise subtraction: this a very common method based on the assumption that noise and speech are 

uncorrelated and additive [7]. In the spectral subtraction approach, the power spectrum of cleaned 
speech is obtained by subtracting the noise power spectrum from the spectrum of noisy speech. The 
noise spectrum is estimated during pause intervals by averaging short-term power spectra over 
successive frames. The method assumes that the noise varies slowly so that the noise estimation 
obtained during a pause can be used for suppression. Obtaining a good estimate of the noise spectrum 
is obviously the most difficult part of the method.  

This process is quasi-linear: the only non-linearity is introduced by the specific solutions to the avoidance of 
negative spectral magnitudes in the subtraction operation (e.g. thresholding). There are several biases in the 
process: thresholding, approximation on signal phase (the phase of noisy signal is used for reconstructing the 
spectrum of cleaned signal), non-stationarity of real noise, etc.). These biases result in the introduction of a 
"musical" noise in the cleaned signal due to the presence of spurious peaks in the spectrum. A solution to this 
problem is to design a non-linear spectral subtraction which basically consists in overestimating the noise 
spectrum, either in a uniform way, or else based on the perceptual evidence that the ear is more sensitive to 
the peaks of a power spectrum than to the valleys and that noise in the frequency regions of the valleys 
contributes the most to perceptual distortions. This latter solution has significantly improved the recognition 
performances compared to normal subtraction [32]. Non-linear subtraction has given very good results in 
noisy word recognition, especially when combined with robust recognition techniques; 
 • filtering: traditional adaptive filtering techniques like Wiener or Kalman filtering have been used for 

speech enhancement, but more for speech transmission than for recognition purposes. As for the noise 
subtraction techniques, the most difficult aspect is the proper estimation of noise characteristics from 
observations. The Wiener filter provides an optimal solution to the adaptive filtering problem in the 
sense of least mean square error. It necessitates the estimation of some parameters of the noise. Unless 
the noise is stationary and perfectly known that must usually be done iteratively. A recursive optimal 
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estimation can be obtained with a Kalman filter. In this method an AR speech model is estimated by 
an autocorrelation method at each speech frame ns . This speech model together with the noise model 
are used by a Kalman filter in order to extract from sn a better estimate of the enhanced signal nŝ . 
This method results in a substantial improvement in the SNR but, at the same time, it introduces 
several distortions in the speech signal that deteriorate the recognition rate and lead to performances 
lower than those obtained with non-linear spectral subtraction; 

 • space mapping: speech enhancement can be viewed as the process of transforming noisy speech into 
clean speech by some kind of mapping. For instance, spectral mapping has been implemented by a set 
of rules obtained by vector quantization techniques. A statistical mapping of spectra has also been 
done. This technique is based on the extraction of noise-resistant features from speech, and can thus be 
considered as noise-independent to some extent. Another method based on the use of multiple linear 
regression techniques applied to MFCC vectors has been reported to give better results than linear 
spectral subtraction for word recognition in a car. The idea can be generalized to arbitrarily complex 
space transformations thanks to connectionist neural networks. Even simple models such as multi-
layer perceptrons have been trained on learning samples to produce a mapping of noisy signals to 
noise-free speech that has been tested successfully in an auditory preference test with human listeners. 
They have also been used for learning to differentiate between similar patterns such as plosive 
consonants in the recognition of noisy spelled letters, and for normalizing speech data in order to adapt 
a recognizer to variations in telephone line conditions. Some improvements have been brought to the 
method based on the fact that the separation between speech and noise is easier to carry out at the 
output of a hidden layer of the network rather than in the initial physical space. 

4.4. Improvement of Speech Analysis Methods 

An important category of noisy speech processing techniques is concerned with the design of robust 
front-ends that produce noise-resistant acoustic features. Such methods usually do not make any assumptions 
about the characteristics of noise. Some of them are described below. 
 • non-parametric representations: Mel Frequency Cepstrum Coefficients (MFCC) are to some extent 

resistant to noise, and certainly more than conventional LPC analysis. Their performances are 
significantly improved by adding dynamic features (∆ MFCC), i.e. the temporal slopes obtained by 
regression on the MFCC coefficients [13]. More generally, the use of dynamic and acceleration 
(second derivative) MFCC and energy features makes it possible to enhance the recognition 
performances for noisy and/or Lombard speech. It is worth noticing that time derivatives are high-pass 
functions. These techniques are therefore related to the subband or cepstral domain filtering methods 
such as RASTA (cf. below), subband high-pass filtering, or spectral normalization.  

A general framework for removing distortions from noisy speech cepstra, called SPLICE [11], has also 
been designed. SPLICE takes noisy acoustic observations y, and produces clean estimates x. The relationship 
between x and y is modelled as a constrained Gaussian mixture model (GMM). An auxiliary variable m is 
introduced to index the hidden state of the GMM. The SPLICE transform fµ(y) is the MMSE estimate of x, 
given y and the model parameters µ. There have been several investigations in producing discriminatively 
trained linear transformations of the feature space, such as MCMIP [36], MCELR [19] and MPE-HLDA 
[46]. These methods achieve relatively modest improvements over LDA and HDA. A natural extension is to 
discriminatively train a non-linear transformation of the feature space, instead linear ones. This is the 
approach taken by MCE-SPLICE [45], fMPE [37], and MMI-SPLICE [12]. This eliminates the necessity of 
providing observable clean features x. While ML-SPLICE learns a transformation to a fixed oracle feature 
space, MMI-SPLICE is only concerned with improving the accuracy of the end-to-end system. 

A mechanism of feature compensation has been proposed for enhancing the robustness of MFCC. The 
basic idea of compensation is to subtract features that are dependent on a particular speaker or environment 
from observed features. In cepstrum mean normalization (CMN), the long-term average of the cepstrum is 
subtracted from each speech frame. This helps eliminate changes due to differences among speakers as well 
as to environment and channel changes, since these changes are slower than the changes in the features of 
speech itself [2]. 

Data analysis techniques have been used in the IMELDA system [23], [24] in order to obtain a robust 
representation of noisy speech (but also of clean speech, as further experiments have demonstrated). 
IMELDA carries out a linear transformation based on discriminant analysis with minimization of within-
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class differences and maximization of inter-class differences. The result is a low dimensionality 
representation space in which recognition algorithms perform well. An advantage of the method is that 
recognition is also computationally inexpensive. IMELDA coefficients are computed from an initial 
parameter space which varies according to the version of the system: outputs of a large filter bank, static and 
dynamic outputs of the filter bank, outputs of a simulated auditory model based on Seneff's model. This latter 
representation has given good performances for both clean and noisy speech recognition. The combination of 
IMELDA with a non-linear spectral subtraction method has also been shown as giving improved 
performances in the recognition of speech in a car; 
 • parametric representations: several improvements of LPC analysis in the presence of noise have 

been tested with some success. Some of these methods are based upon an alternative solution to the 
speech deconvolution problem. The classical solution consists in identifying the impulse response of 
the vocal tract by AR or ARMA modeling. The other solution is to map the time signal space into a 
linear structure by using a homomorphic transformation that corresponds to a filtering in the cepstral 
domain. The logarithm homomorphic deconvolution can be further generalized to a spectral root 
deconvolution. This root scheme differs from the original homomorphic deconvolution scheme by 
changing the logarithmic and exponential functions respectively by (.)ß and (.)1/ß with -1 < ß < +1, 
ß ≠ 0. This scheme has been proven as significantly less affected by noise than the log scheme. 

The short-time modified coherence, SMC [34] representation of speech computes coefficients that are 
LPC coefficients obtained by taking the characteristics of the autocorrelation domain into account. It can be 
best described as the estimate of an AR model in the autocorrelation domain, and it exploits the fact that an 
autocorrelation sequence is more resistant to noise than the original signal. SMC analysis made it possible to 
increase the SNR by 10 to 12 when it was initially 0 to 20 dB. It is worth noticing that the amount of 
improvement is essentially data dependent. 

SMC has some drawbacks, especially a stronger interaction between F0 and formant frequencies due to 
the fact that computation is done in the spectral power density domain. That can be overcome by introducing 
in the algorithm a square root calculation instead of the absolute value of FFT that makes some kind of 
spectral compression. SMCC coefficients can also be obtained by applying a cepstrum calculation to the 
SMC coefficients.  

PLP (Perceptual Linear Prediction) [20] differs from LPC by the use of three concepts derived from the 
study of human hearing, i.e. critical band spectral resolution, pre-emphasis with an equal-loudness curve, and 
spectral compression according to a intensity-loudness power law. A comparative study has shown the 
superiority of PLP over LPC for noisy speech recognition, especially in conjunction with a liftered cepstral 
distance (cf. section 6) [26]. 

The RASTA (Relative Spectral) [21] operates both in time and frequency. The method consists in 
operating in the log power spectral domain. That makes it possible to remove, or at least efficiently reduce, 
by filtering techniques, slow-varying communication noise, which is additive in the log domain. On the other 
hand, noise which is additive in the time domain will not be removed, and could possibly be exaggerated by 
the log operation. A proposed solution consists in designing a filtering function that is linear for low values 
in the auditory spectrum and approximately logarithmic for large values with a threshold related to the SNR 
value. This method has been tested on small vocabulary, isolated word recognition. A combination of PLP 
and RASTA analysis has also been reported as effective for speaker verification with degraded speech [22]. 

RASTA is a good way for capturing the temporal properties of speech. But the speech signal also 
exhibits combined spectro-temporal modulations due to various factors: intonation, coarticulation, etc. A 
psychoacoustical model, implemented with the help of two-dimensional Gabor functions, has been proposed 
in order to capture such modulations. This model has provided a consistent performance improvement [28]. 

5. MISSING DATA APPROACHES 

Non-stationary noise is particularly difficult to handle in ASR systems. Speech recognition with 
missing data was proposed to deal with such conditions. The idea is to take advantage of the high 
redundancy of the speech signal. Usually, noise affects only localized zones of the time-frequency plane, so 
that there remains sufficient information in the clean regions of the spectrum to recognize speech. The least 
noise-corrupted features are labeled as reliable, whereas the noisiest ones, associated with missing data are 
discarded. 
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There are two different methods to handle missing data during the recognition process. The first 
method, called data imputation, consists in replacing all missing values by their estimation in order to 
provide the recognizer with a completely observed signal. Several methods have been tried to infer the 
missing values [39]. In the second method, called data marginalization, the recognition engine is modified in 
such a way that it could handle partial feature vectors. Several algorithms for data marginalization have also 
been proposed [4], [35]. 

This missing data approach necessitates classifying every input feature as reliable or missing, hence 
defining a so-called missing data mask. The overall recognition performance is highly dependent upon the 
quality of these masks. Several mask estimation methods have been proposed so far [9], [40]. Among them, 
Bayesian mask estimation consists in training statistical models for reliable and unreliable features and in 
estimating the most probable mask according to the noisy observed feature. An original Bayesian mask 
model has recently been proposed that takes into account two major properties [9]: 

– a set of features that contains information from spectrographic neighbors is assigned to each 
coefficient; 

– dependencies across frequency and time between mask values are introduced during the mask 
estimation process. The proposed solution is global, which means that mask values that are far from 
the coefficient of interest may influence the decision of the mask estimator. 

This proposed solution has been tested on Aurora 2 and 4 databases. Experimental results show that the 
dependencies between mask values improve recognition accuracy. 

6. MODEL ADAPTATION 

Since a major cause of performance degradation is the discrepancy between training and testing 
conditions, it seems interesting to transform the parameters of recognition models in order to adapt them to 
new conditions. Such adaptation techniques have received considerable interest during the past few years, as 
well for speaker adaptation [14] as for environment adaptation, either in a supervised or unsupervised mode.  

One of the first of this category is the Parallel Model Combination (PMC) scheme [15]. This method 
applies to stochastic models like HMMs or trajectory models. It consists of choosing a representation space 
that makes it possible to obtain an adapted noisy model by simple combination of a clean speech model and 
of a noise model (the noise being supposed stationary). Combination methods need to have sufficient noise 
data to train the model. They suffer from the problems of unknown noise types or Signal-to-Noise Ratios. 
Some solutions have been proposed to solve these problems [25]. 

Regression methods have also been extensively used to adapt the parameters of a model. Among the 
most popular is the linear regression by maximum likelihood (Maximum Likelihood Linear Regression, 
MLLR). In this method, the means of the statistical model, and possibly the variances, are estimated as linear 
combinations of the original means and of a bias in order to linearly transform the probability density 
functions of acoustic models. These estimations are based on a set of adaptation data with a maximum 
likelihood (ML) criterion [31]. For the performance improvement obtained by unsupervised MLLR on 
Aurora 4 task, see [3]. 

Another class of methods consists of a maximum a posteriori Bayesian estimation [17]. In that case, the 
probability distribution function of the model parameters is chosen a priori. Parameters are then estimated 
with a Maximum a Posteriori (MAP) criterion, instead of a classical maximum likelihood. This method can 
be viewed as an extension of the training phase limited to the adaptation data and some prior information 
about the estimation parameters. This information is particularly useful in case of sparse adaptation data. 

Several approaches have been proposed in order to cumulate the advantages of MLLR and MAP 
techniques [1], in particular Structural Maximum a Posteriori, SMAP [42], Maximum a Posteriori Linear 
Regression, MAPLR [10], and Structural Maximum a Posteriori Linear Regression, SMAPLR [43]. All these 
methods exploit the hierarchical organization of acoustic models and the hierarchical principle of parameter 
estimation under the MAP criterion in order to improve the estimation. Available adaptation is more 
efficiently used, and, moreover, the models for which no adaptation data are present can nevertheless be 
adapted. Such approaches are particularly useful when a rapid adaptation is necessary, for instance in 
telephone-based dialogue systems.  

The adaptation to new data can also be carried out by a first order Jacobian approach in which initial 
acoustic models under an initial condition A are to be brought to a target condition B, assuming that A and B 
are not too different. This method has been shown to be effective for adaptation to a given noisy condition 
[41], [8]. 
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Another approach to speaker adaptation is based on clustering techniques. The basic idea consists of 
clustering the speakers of the training set according to acoustic similarity in order to capture intra-speaker 
inter-class correlations [14]. The Speaker Cluster Weighting algorithm, SCW [16] extends this idea by 
allowing the speaker cluster models that have been learned from the training data to be adaptively weighted 
to match the current speaker. A combination of SCW with a clustering method for dealing with speakers for 
whom a small amount of data is available has also been proposed [38]. The SCW approach is similar in 
principle to eigenvoices [30] in the sense that this latter also explicitly utilizes the set of training data to 
constrain the adaptation. 

7. CONCLUSION 

A large variety of methods have been proposed so far in order to increase the robustness of automatic 
speech recognition systems. This problem is very difficult and diverse; it constitutes a major bottleneck for 
the practical use of speech recognizers in real conditions. In this paper, we have briefly presented some of 
the most promising approaches proposed so far. 

 Despite significant results, several questions are still open. As a matter of fact, it can be said that the 
problem of robust, environment-independent or environment-adaptive speech recognition is still in its 
infancy. A major issue is the dependability of present methods to noise characteristics or to speakers. 
Another important point is the need for methods capable of dealing with non-stationary noise conditions, 
such as door slams, telephone rings or other transitory sounds in an online, unsupervised way. 

 A large effort has still to be done in order to comparatively evaluate the different existing methods, 
and to improve them. This necessitates an important, and on-going, effort of speech databases recording and 
assessment method design. 
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