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This paper presents our methodology for ASR in the context of under-resourced languages. Our data 
collection methodology is explained. Then, different techniques for bootstrapping acoustic models are 
presented: cross-lingual and grapheme-based acoustic modelling. Firstly, we present the potential of 
cross-lingual independent and dependent acoustic modelling for Vietnamese language. Experimental 
results on Vietnamese ASR show that when we have only a few hours of speech data in the target 
language, cross-lingual context-independent (CI) modelling works better. However, when we have 
more speech data, cross-lingual CI modelling is outperformed by cross-lingual context-dependent 
(CD) modeling. We also conclude that, in both cases, cross-lingual systems are better than 
monolingual baseline systems. We also investigate some techniques of grapheme-based acoustic 
modeling. To improve the performance of the graphemic acoustic models initialization, we use a 
word boundary detector to segment an utterance into words. This technique eliminates some inter-
word segmentation errors. Moreover, results obtained both from Vietnamese and Khmer ASR 
demonstrated the feasibility of the grapheme-based approach. Finally, we also present preliminary 
experiments in statistical language modelling for reducing the complexity of the models using sub-
word units. The potential of such an approach is shown for dialectal Arabic where very few text data 
are available for training a statistical language model. 

Key words: Speech recognition, under-resourced languages, acoustic model bootstrapping, sub-word 
units for language modelling. 

1. INTRODUCTION 

Nowadays, computers are heavily used to communicate via text and speech. Text processing tools, 
electronic dictionaries, and even more advanced systems like text-to-speech or dictation are readily available 
for several languages. However, there are more than 6000 languages in the world and only a small number 
possess the resources required for implementation of Human Language Technologies (HLT). Thus, HLT are 
mostly concerned with languages for which large resources are available or that have suddenly become of 
interest because of the economic or political scene. On the contrary, languages from developing countries or 
minorities have been less worked on in the past years. One way of improving this “language divide” is to do 
more research on portability of HLT for multilingual applications. 

Among HLT, we are particularly interested in Automatic Speech Recognition (ASR). Therefore, we 
are interested in new techniques and tools for rapid development of ASR systems for under-resourced 
languages or π-languages when only limited resources are available. These languages are typically spoken in 
developing countries, but can nevertheless have many speakers. In this work, we investigate especially 
Vietnamese and Khmer, which are respectively spoken by 67 million and 13 million people, but for which 
speech processing services do not exist at all. In fact, measuring the availability of these services for a given 
language allows one to define its “computerization level”. An example of such a metric is presented in [4]: a 
list of services is evaluated, for a given language, by an expert and a mean score is calculated (marks for 
each service are weighted by the “criticity” or importance of the service). Table 1 gives an example of this 
metric applied to Khmer, a language mainly spoken in Cambodia (6.2/20). The same metric evaluated for 
Vietnamese (table 2) gives 10/20. In [4], an under-resourced language (or π -language) is thus defined as a 
language that has a score below 10/20. 

From these tables, we can note that for both languages, speech processing services do not exist at all. 
The reason is mainly that for developing such systems, a large amount of resources is needed (text, 
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transcribed speech corpora, phonetic dictionaries). Such resources are not available for languages like 
Vietnamese and Khmer. One may also face other problems like the absence of linguistic or phonetic 
descriptions, few standards (character coding, IPA, etc.), languages mainly spoken (and not really written). 

Table 1. Computerization level for the Khmer language 

 Services / resources Importance 
(/10) 

Mark 
(/20) 

Weighted mark 
(Importance x Mark) 

Text processing    
 Basic input 10 16 160 
 Visualization / printing 10 14 140 
 Searching and replacing 8 12 96 
 Text selection 6 12 72 
 Lexicographical sort 5 0 0 
 Spelling correction 2 0 0 
Speech processing    
 Text-To-Speech 5 0 0 
 Automatic Speech Recognition 5 0 0 
Translation    
 Tools for automatic translation 8 4 32 
OCR    
 Optical Character Recognition 9 0 0 
Resources    
 Bilingual dictionary 10 4 40 
 Usability dictionary 10 0 0 
Total 88  540 
Average   6,2 / 20 

Table 2. Computerization level for the Vietnamese language 

 Services / resources Importance 
(/10) 

Mark 
(/20) 

Weighted mark 
(Importance x Mark) 

Text processing    
 Basic input 10 16 160 
 Visualization / printing 10 16 160 
 Searching and replacing 8 17 136 
 Text selection 6 17 102 
 Lexicographical sort 5 6 30 
 Spelling correction 2 6 12 
Speech processing    
 Text-To-Speech 5 0 0 
 Automatic Speech Recognition 5 0 0 
Translation    
 Tools for automatic translation 8 6 48 
OCR    
 Optical Character Recognition 9 12 108 
Resources    
 Bilingual dictionary 10 13 130 
 Usability dictionary 10 0 0 
Total 88  886 
Average   10 / 20 
 

This paper presents an overview of our activities concerning ASR for under-resourced languages. We 
have thus developed a methodology and tools to collect, process and model linguistic and acoustic resources 
in order to quickly develop ASR systems for new under-resourced languages. 

Firstly, our methodology for rapid text and speech corpora acquisition for under-resourced languages is 
proposed in section 2. For fast developing of text processing tools for a new under-resourced language, an 
open source generic toolkit named CLIPS-Text-Tk was developed in our work.  

For acoustic modeling, we address particularly in section 3 the usage of acoustic-phonetic unit 
similarities for multilingual acoustic models portability to new languages. Especially, an estimation method 
of the similarity between two phonemes is first proposed. Based on these phoneme similarities, some 
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estimation methods for polyphone similarity and clustered polyphonic model similarity are investigated. For 
a new language, a source/target acoustic-phonetic unit mapping table can be constructed with these similarity 
measures. Then, clustered models in the target language are duplicated from the nearest clustered models in 
the source language and adapted with limited data to the target language. Results obtained for Vietnamese 
demonstrate the efficiency of these methods to bootstrap acoustic models.  

In section 4, we describe our attempts to reduce statistical language model complexity, which is 
particularly needed when few text data are available for a given language. A sub-word modeling approach is 
proposed and preliminary results are presented in this section. Finally, section 5 concludes this work. 

2. COLLECTING RESOURCES 

Nowadays, almost all of the techniques and methods in ASR systems, in particular the Large 
Vocabulary Continuous Speech Recognition (LVCSR) systems, use statistical approaches. However, given 
the statistical nature of these methods, a large amount of resources (vocabularies, text corpora, transcribed 
speech corpora, phonetic dictionaries) is crucial and required to train models (acoustic models, language 
models) and to test the performances of the systems. Consequently, a large speech corpus which contains 
hours of signals recorded by hundreds speakers (for acoustic modeling) and a text corpus with millions of 
words (for language modeling) is currently necessary for building an ASR system for a new language.  

However, these crucial resources are not directly available for under-resourced languages. Thus, a 
methodology for rapidly building them is necessary. 

2.1. Collecting text 

Concerning text resources, a new methodology for fast text corpora acquisition for π-languages was 
already proposed and applied in [11]. Documents are gathered from Internet by web robots. Then, these web 
pages are filtered and analyzed for building a text corpus. An open source toolkit is currently proposed by 
our laboratory1. It is important to note that text corpora for language modeling cannot be collected easily for 
under-resourced languages for the following reasons: 

- There are less pages and websites than for well-resourced languages. 

- The debit of communication is often lower (sometimes only several kilobits per second). 

Table 3 illustrates this problem by comparing different figures between a well-resourced language 
(French) and under-resourced languages: number of Internet hosts, number of Internet users and Internet 
connectivity bandwidth. 

Table 3. Problems when using the web to collect text data for under-resourced languages 

Language 
Number of internet hosts 
(cf. INTERNIC2 2001) 

Number of internet users 
(cf. CIA3, 2003) 

Internet bandwidth 
[UIT-ICS 2001] 

French 325 103 21 900 000 191 898 Mbps 

Vietnamese 9 037 3 500 000 34 Mbps 

Khmer 818 30 000 6 Mbps 

Lao 937 15 000 2 Mbps 

 
Consequently, we cannot crawl all of the websites but we must focus on some which have more pages 

and higher debit than the others. So, a non-negligible time is needed to find out the websites to collect. For 
                                                            
1 http://www-clips.imag.fr/geod/User/viet-bac.le/outils/ 
2 International Network International Center http://www.internic.net 
3 CIA The World Factbook: http://www.cia.gov/cia/publications/factbook/index.html 
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this purpose, the most interesting and easy to find web sites will be generally news websites. Most of them 
have archives that can be collected in order to have a larger amount of data. The drawback is that the data 
collected will be “newspaper like” and not necessarily representative of the spoken language. Table 4 
illustrates the amount of data that can be collected from such a web site (data collected from the “Voice of 
America” web site4 for different languages). 

Table 4. Example of the amount of text data that can be collected on a news web site 

Language #sentences #words #size 
Indonesian 116k 2.4M 17M 

Korean 405k 7M 67M 
Pashto 7k 0.2M 2M 

Kurdish 24k 0.6M 8M 
Hindi 73k 2M 28M 

Persian (farsi) 212k 5.8M 54M 

This table shows that it is possible to collect a reasonable amount of data for some languages; however, 
it shows also that big differences exist between under-resourced languages concerning the amount of data 
that can be collected with such a method. 

2.2. Collecting speech 

Concerning speech resources, we have first built local collaborations (MICA/Hanoi, ITC/Phnom-Penh) 
and performed local recordings. For the acquisition and management of speech signals during recording, we 
use the EMACOP system, developed in our laboratory [18]. EMACOP is a Multimedia Environment for 
Acquiring and Managing Speech Corpora, running under Windows environment. This system also provides 
verification facilities, through an integrated interface, to check signal quality and consistency between 
resulting signals and what was presented to the speaker during recording. EMACOP runs in a multithreading 
client-server architecture and meets SAM specifications in input and in output. An example of the EMACOP 
interface for khmer is presented in Figure 1. 

 
 

 
 

Figure 1. Example of the EMACOP interface for khmer. 

                                                            
4 www.voanews.com 
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3. ACOUSTIC MODEL BOOTSTRAPPING 

3.1. Acoustic-Phonetic Unit Similarities 

The research in cross-lingual acoustic modeling is based on the assumption that the articulatory 
representations of phonemes are so similar across languages that phonemes can be considered as units which 
are independent from the underlying language [14]. Based on this assumption, we propose in this section 
some methods for estimating the similarities of some phonetic units (phoneme, polyphone, clustered 
polyphone) which will be further used in cross-lingual context dependent acoustic modeling. 

Phoneme Similarity 

In our work, both data-driven and knowledge-based methods are applied and proposed to automatically 
or manually obtain the phoneme similarities across languages. 

a) Data-driven methods. The acoustic similarity between two phonemes can be obtained automatically 
by calculating the distance between two acoustic models (HMM distance [10], Kullback-Leibler distance, 
Bhattacharyya distance, Euclidean distance [16] or by calculating a confusion matrix [3, 5]). A confusion 
matrix is calculated by applying a source language phoneme recognizer to a small amount of target language 
acoustic data, which was already phonetically annotated with the target language acoustic units. Note that in 
the basic phoneme recognizer we use, all phonemes have the same probability to appear. Then, each entry of 
the confusion matrix is normalized by dividing it through the number of occurrences of all corresponding 
phonemes in the source language [12]. 

Normally, the confusion matrix represents the likelihood of the confusion between two phonemes. 
Thus, we can use these phoneme confusions to evaluate phoneme similarities. Let M, N be numbers of 
phonemes in source and target language. Let A(M,N) be the confusion matrix. The similarity  d(si, tj) between 
phoneme tj  in the target language and phoneme si in the source language is calculated as: 

d(si, tj) = Ai,j (1)

where Ai,j ∈ [0,1], i=1..M, j=1..N. 

b) Proposed knowledge-based method. Traditionally, knowledge-based methods have been applied to 
find the phoneme of the source language that best matches a phoneme in the target language [5, 14]. 
However, no knowledge-based method is known that allows computing the similarity between two 
phonemes. Thus, in this section, we propose a new knowledge-based method to calculate the phoneme 
similarity. As we know, similarities between sounds are documented in international phonetic inventories 
like the International Phonetic Alphabet (IPA)5 which classifies sounds based on phonetic knowledge. 

Based on the IPA phoneme classification, we propose a bottom-up algorithm to determine a distance-
based similarity between two phonemes. This algorithm consists of two steps: top-down classification using 
a hierarchical graph and bottom-up phoneme distance estimation. 

Step 1: Top-down classification. Figure 2 shows a hierarchical graph where each node is 
classified into different layers. To each node we manually assigned a group of phonemes following 
the IPA phoneme classification scheme. Each group of phonemes has a user-defined similarity 
value assigned, which represents the similarity between the elements within this group. All nodes 
corresponding to the same layer obtain the same similarity value. Let k be the number of layers and 
Gi be the user-defined similarity value for layer i (i = 0...k-1). In our work, we investigated several 
                                                            
5 http://www2.arts.gla.ac.uk/IPA/ipa.html 
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settings of k and Gi and set G = {0.9; 0.45; 0.25; 0.1; 0.0} with k = 5 based on a cross-evaluation in 
cross-lingual acoustic modeling experiments. 

 
Figure 2. Hierarchical graph for phoneme similarity 

To grow this graph, we start with the group PHONEME, which contains all the phonemes, at layer 0 
and divide it into a CONSONANT group and VOWEL group at layer 1. This top-down classification is 
applied with increasingly specified grouping criteria until each group contains only one phoneme. 

Step 2: Bottom-up estimation. To estimate the distance between two phoneme s and t, we locate them 
in the leaves of the graph and then trace back from their respective leaves until the nearest common parent 
node is reached. The similarity between s and t is thus given by the similarity value of layer i, which contains 
this parent node, we have: 

d(s, t) = Gi (2)

For example, the parent node of vowel [i] and [u] is CLOSE, we have:  

d([i], [u]) = G2  ( = 0.25 in our experiment ). 

Polyphone Similarity 
Let L be the left and the right context length of a polyphone. We assume that the context length of 

polyphones in source and target language are the same. If not, a context normalization procedure is needed. 
Let S be the phoneme set in source language, T be the phoneme set in target language. 

Let PS = (s-L, s-L+1,…, s-1, s0, s1,…, sL) and PT = (t-L, t-L+1,…, t-1, t0, t1,…, tL) be polyphones in source and 
target language, where s-L,…, s-1, s0, s1,…, sL ∈ S and t-L,…, t-1, t0, t1,…, tL ∈ T denote the central phoneme, 
left phonemes or right phonemes of PS and PT.  

The distance-based between PS and PT is calculated as a weighted sum of distances between 
corresponding source/target phonemes along their context: 

d(PS, PT) = ∝0.d(s0, t0) + ∝1.[d(s-1, t-1) + d(s1, t1)] + …  + ∝L.[d(s-L, t-L)+d(sL, tL)] (3)

where ∝0, ∝1,… ∝L are contextual weight coefficients which represent the influence of contextual phoneme 
to the central phoneme; d(sk, tk) is the phoneme distance (k = -L,…L). In the same way, the triphone 
similarities are calculated in [7]. 

PHONEME 

CONSONANT VOWEL

PLOSIVE BILABIAL BACK CLOSE . . .

p b mt i y uɯ

CLOSE-BACK CLOSE-FRONT … … 

a e

Layer 0 

Layer 1 
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Layer 4 

PLOSIVE-BILABIAL 
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Figure 3. Example of similarity between two polyphones. 

Figure 3 shows an example of the similarity between polyphone PS = (A B C D E) and PT = (a b c d e) 
in the source and target language. For each polyphone of the target language, the nearest polyphone PS* in 
source language is obtained that satisfies the following relation: 

∀ PS ∈ S, d(PS*, PT) = min[d(PS, PT) ] (4)

Clustered Polyphonic Model Similarity 

Since the number of polyphones in a language is very large (e.g., over 100,000 triphones for English), a 
limited training corpus usually does not cover enough occurrences of every polyphone. As a consequence 
many polyphones in the test set have never been seen in training. Thus, we need to find models that are 
accurate and trainable in acoustic modeling. A decision tree-based clustering (illustrated in figure 4), or an 
agglomerative clustering [7] procedure is needed to cluster and model similar polyphones in a clustered 
polyphonic model. 
 

 
Figure 4. Clustered polyphone similarity across languages. 

Therefore, for cross-lingual context dependent modeling, a clustered polyphonic model similarity 
evaluation method must be proposed to find two nearest clustered polyphonic models across languages 
(figure 4).  
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Let ΦS = (PS1, PS2… PSm) be a clustered polyphonic model of m polyphones in the source language and 
ΦT = (PT1, PT2,…, PTn) be a clustered polyphonic model of n polyphones in the target language, the similarity 
between ΦS and ΦT is the average of all distances between any two polyphones in ΦS and ΦT. We have: 

nm

PPd
d

m

i
TjSi

n

j
TS ⋅
=ΦΦ
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= =1 1

),(
  ) ,(  

(5)

For each clustered polyphone set in the target language, the nearest clustered polyphone set PS* in 
source language is obtained if it satisfies the following relation: 

∀ΦS, d(ΦS*, ΦT) = min [d(ΦS, ΦT)] (6)

3.2. Crosslingual Acoustic Modeling 

Context Independent Acoustic Model Portability 

For context independent acoustic modeling, the phonetic unit is the monophone and a distance between 
monophone models is calculated. ΦS and ΦT are calculated using the distance between two phonemes. 
Equation (5) leads to: 

d(ΦS, ΦT) = d(PS, PT) = d(s, t) (7)

where d(s, t) is calculated by equation (1) or (2).  
Equation (6) leads to: 

∀ΦS, d(ΦS*, ΦT) = min [d(ΦS, ΦT) ] = min[d(s, t)] (8)

By applying equation (8), a phoneme mapping table between source and language can be obtained. 
Based on this mapping table, the acoustic models in the target language can be borrowed from the source 
language and adapted by a small amount of target language speech data (see [12] for more details). 

Context Dependent Acoustic Model Portability 

In this section, a context dependent acoustic model portability method is proposed based on the 
phonetic similarities described in the previous section. 

Firstly, by using a small amount of speech data in the target language, a decision tree for polyphone 
clustering (PTT) can be built. We suppose that such a decision tree (PSS) is also available in the source 
language (figure 4). 

Secondly, by applying the equation (5), we can evaluate the distance between any two source/target 
clustered polyphonic models. That allows us, by applying the equation (6), to determine for each model in 
the target language, the most similar model in the source language. This model is then copied into the 
acoustic model in the target language. 

Finally, while acoustic models borrowed directly from the source language did not perform very well, 
an adaptation procedure (MLLR, MAP, etc.) can be successfully applied with a small amount of speech data 
in the target language (see also [14]). 

3.3. Grapheme-Based Acoustic Modeling 

Traditionally, ASR systems represent lexical units in terms of sub-word units. The selected unit is 
usually phoneme (monophone or polyphone). Thus, the performance of the ASR systems depends on the 
quality of the pronunciation dictionary.  
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However, for under-resourced languages, the design of a pronunciation dictionary may be a problem 
because of the following reasons: 

- No expert knowledge of the target language may be available (non native developers, badly described 
languages, etc.), 

- Handcrafting process is time and cost consuming.  

In our work, we investigated some techniques in grapheme-based acoustic modeling. This modeling 
approach was already used in previous works [8], [9], [1] for well-resourced languages. It does not use any 
pronunciation dictionary since the words of the vocabulary are described in terms of grapheme units. Then, a 
word boundary detector is used to initialize the grapheme-based CI acoustic models. For CD modeling, we 
also propose and compare different question generation techniques for decision trees.  

Initialize the acoustic models 

Since there are no labeled training data for graphemes, some alternative initialization strategies must be 
used to initialize the acoustic models: random start, flat start or uniform segmentation, etc. With flat start, we 
can make all models identical initially. With uniform segmentation, acoustic models are started by uniformly 
segmenting the speech data and associating each successive segment with successive states (like in the 
Hidden Markov Modeling Toolkit (HTK) [20]). Figure 5 presents a uniform segmentation of speech data to 
initialize the grapheme-based models. 

 Speech signal 

 

Uniform segmentation sil c h i h o i a i Sil v â y sil 

Figure 5. Uniform segmentation of speech data. 

Some previous works concluded that seed models perform better than random or flat starts [19]. In fact, 
by using the seed models, we can provide sub-word unit transcriptions of speech data by an automatic time 
alignment procedure. In phoneme-based acoustic modeling, seed models in target language can be borrowed 
from other languages (called cross-lingual acoustic models). In grapheme-based acoustic modeling, the use 
of seed models borrowed from a multilingual grapheme-based system can speed up the bootstrapping 
procedure in comparison with flat start but the performances of two methods are similar [9]. This is due to 
the poor sharing of graphemes across languages.  

In our work, we investigate another initialization strategy of acoustic models. Firstly, we use a word 
boundary detector to decode the lower and upper boundary of every word in the utterance. Then, for each 
word, we uniformly segment speech data to every grapheme of the word. Figure 6 shows an example of 
speech data segmentation using word6 boundary detection.  

Signal 

 

Word boundary detection sil chị hỏi ai sil vậy 

Uniform segmentation within word sil c h i h o i a i sil v â y 

Figure 6. Segmentation of speech data using word boundary detection. 

The accuracy of proposed strategy and uniform segmentation strategy will be compared in the 
experiments section. 

                                                            
6 with is actually a syllable boundary detection for this example in vietnamese language 
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Grapheme-Based CD Acoustic Modeling 

Obviously, the grapheme is not an appropriate unit in acoustic modeling and its pronunciation strongly 
depends on its writing context. Thus, some CD acoustic modeling techniques must be investigated to 
improve the accuracy of grapheme-based acoustic models. In fact, graphemic questions for decision tree 
state tying can be built manually or automatically by borrowing some techniques from phoneme-based 
acoustic modeling. Some previous works compared some question generation techniques in the grapheme-
based systems [8], [9] but the performance of these techniques depend on each language. Therefore, in this 
paper, we try to see how appropriate these question generation techniques in context of under-resourced 
languages are. These comparative experiments help us to find the appropriate techniques for each language. 
Thus, two techniques are investigated and compared in our experiments: 

- Singleton: each graphemic question contains a grapheme. 
- Grapheme-phoneme conversion: a grapheme is assigned to a phonetic question if the grapheme is 

part of the phoneme. 

Table 5 presents a graphemic conversion of some phonetic questions in Vietnamese language.  

Table 5. Grapheme-phoneme conversion 

Phonetic questions Phoneme Grapheme 
ALVEOLAR t tʰ d n s z l t d đ n x l s r 
VELAR k χ ŋ ɣ c k g 
FRICATIVE f v s z ʂ ʐ χ ɣ h v s x d r k g h 
APPROXIMANT w j u o i y 
FRONT i e ɛ ɛ̆ a a ̆ y i ê e a ă 
BACK ɯ u ɤ ɤ̆ o ɔ ɔ̆ uw u ơ â oo o 
CLOSE i ɯ u y i ư u 

3.4. Experimental results 

Experimental framework 

All recognition experiments use the JANUS toolkit [6] developed at the ISL Laboratories. The model 
topology is a 3-state left-to-right HMM with 48 Gaussian mixtures per state. The pre-processing of the 
system consists of extracting a 43 dimensional feature vector every 16 ms. The features consist of 13 
MFCCs, energy, the first and second derivatives, and zero-crossing rate. An LDA transformation is used to 
reduce the feature vector dimensionality to 32.  

For language modeling (LM), since Vietnamese is a syllable-based writing system, a vocabulary of 
6,492 Vietnamese syllables is collected. A vocabulary of 16,000 words is also obtained for Khmer. Then, for 
building a text corpus, documents were gathered from Internet and filtered. After data preparation, a text 
corpus of 868 MB for Vietnamese and 97 MB for Khmer is collected, respectively [13]. Since Khmer 
language is a non-segmented language, a dictionary-based word segmentation tool is needed to segment a 
text sentence into words. The preliminary results obtained show 0.8% of segmented word error and 4.0% of 
segmented sentence error. Then, a syllable-based statistical trigram LM for Vietnamese and a word-based 
statistical trigram LM for Khmer are estimated from these text corpora using Katz backoff with Good-Turing 
discounting (use of SRILM toolkit [17]). It is important to note that in these LMs, the unknown words are 
removed since we are in the framework of closed-vocabulary models. The perplexity value evaluated on our 
speech test corpus is 109 for Vietnamese SLM and 84 for Khmer SLM. 

For Vietnamese acoustic modeling, in order to build a polyphonic decision tree and to adapt the 
crosslingual acoustic models, 13 hours of speech data spoken by 36 speakers were used. The test set contains 
400 utterances spoken by 3 speakers different from the training speakers. For Khmer acoustic modeling, we 
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collected 3 hours of data spoken by 10 speakers. The training corpus contains 165 minutes and the test 
corpus contains 200 sentences spoken by the same 10 speakers. 

Results 

For cross-lingual experiments, we used a pool of multilingual context-independent models (MM7-CI) 
and context-dependent models (MM6-CD with 12,000 sub-quinphone models) developed by ISL 
Laboratories [14]. After the cross-lingual transfer procedure, initial models were adapted with 2.25 hours (7 
speakers) and 14 hours (36 speakers) of Vietnamese speech data. Figure 7 presents the syllable accuracies of 
cross-lingual models with different amount of adaptation data. We note that VN-CI and VN-CD1000 are 
baseline systems (no use of cross-lingual information for bootstrapping process), which correspond to CI and 
CD models with 1000 sub-triphones. Similarly, MM7/VN-CI and MM6/VN-CD1000 are cross-lingual CI 
and CD models. We find that when only 2-3 hours of data is available in target language, cross-lingual CI 
models outperform cross-lingual CD models but when we have more data (10-15 hours), cross-lingual CD 
models are better. Anyway, in both cases the use of cross-lingual approaches to bootstrap the systems 
outperforms the baseline. It is of course more clear when only a small amount of data is available (2.25 
hours). 

61,3 60,4

55,3
57,4

62,7

48,8

63,4

52,2

62,0

47,3

35

45

55

65

2.25h -7spk 14h-36spk

%SA
VN-CI MM7/VN-CI VN-CD1000
MM6/VN-CD1000 VN-CD1000-GP

 
Figure 7. Comparison of acoustic modeling techniques with different amount of adaptation data for Vietnamese ASR 

(% syllable accuracy). 

In addition, we also compare performances of phoneme-based (VN-CD1000) and grapheme-based 
(VN-CD1000-GP) approaches for Vietnamese in figure7. Although the grapheme-based approach is slightly 
outperformed by the phoneme-based approach, the grapheme-based approach shows a good potential when 
no pronunciation lexicon is available. For Khmer ASR, since there is no phonetic dictionary available, we 
investigate a grapheme-based ASR system. Firstly, we compare two initialization strategies of grapheme-
based CI acoustic models: uniform segmentation (baseline) strategy and word boundary detection strategy. 
Performances (word accuracy) of two strategies are tested after each of the 7 iterations of bootstrapping and 
presented in figure 8. The word boundary detection strategy significantly outperforms the baseline strategy 
during the 5 first iterations and continues to be slightly better in the last iterations. We can conclude from 
this result that the word boundary detection can be efficiently applied to initialize grapheme-based models. 
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Figure 8. Comparison of initialization strategies for grapheme-based acoustic modeling for Khmer ASR (%word accuracy). 
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Then, from CI acoustic models, we continue to build CD triphone models by a decision tree based 
clustering procedure with different techniques of question generation. Performance of acoustic models for 
Khmer is shown in figure 9. The singleton questions are slightly better in 500 and 1500 subtriphones models 
but they are outperformed by grapheme-phoneme questions in 1000 subtriphones models. From this result, it 
is hard to conclude which method is the more efficient. 
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Figure 9. Comparison of question generation techniques in grapheme-based CD modeling for Khmer ASR. 

4. REDUCING MODELS COMPLEXITY 

4.1. Statistical language modeling for non-written or little-written languages and dialects 

As already said, a frequent problem for ASR in under-resourced languages is the lack of text resources. 
Among the languages worldwide, a lot of them do not have a literary tradition and also many dialects are 
used for everyday conversations but not for written communication. Chinese and Arabic are examples of 
languages with a large number of unwritten regional dialects that differ significantly from the standard 
language [15]. In that case, the collection of resources for spoken language technology is more difficult since 
the only way to obtain “text” material is to record and transcribe data in that language. 

Then, the problem is to accurately estimate statistical language models from such a small amount of 
data. This is particularly true for dialects of arabic which has a very rich morphology. For them, prefixes and 
suffixes augment word stems to form words. The problem is that for automatic speech recognition (ASR), a 
word is often defined as a string of characters separated by space. Hence, this word definition is not aware of 
morphological relationships between different words. In practice this leads to a high out-of-vocabulary 
(OOV) rate. For example, 64K word lexicons which typically lead to around a 0.5% OOV rate for English 
result in about 5% OOV for Arabic and hence lead to higher word error rate during recognition. The above 
problem is then even more pronounced for dialectal arabic due to the fact that additional prefixes, and 
sometimes suffixes, are informally introduced during the everyday use of language and that the amount of 
text data available for dialectal Arabic is usually much smaller than that for standard arabic, which will lead 
to poor estimates of the language model probabilities, and hence may hurt ASR performance. 

The next subsection describes our first attempt to try to reduce the complexity of the models 
(vocabulary size, N-gram models) by segmenting LM training data into sub-word units. Here we address the 
use of an automatic morphological segmentation for dialectal Arabic speech recognition.  

4.2. Morphological LM for ASR 

We have developed a finite state transducer based automatic dialectal arabic segmenter. In this model, 
arabic characters, spaces and the automatically inserted prefix and suffix markers appear on the arcs of the 
finite state machine. The language model is conditioned to insert prefix and suffix markers based upon the 
frequency of their appearance in relation to the adjacent n-gram character contexts that appear in the training 
data (we used 5-grams). Our dialectal arabic segmenter was trained on tokenized data of about 100K words. 
The accuracy of this model, computed as the percentage of words in a final segmentation that is in agreement 
with the words provided in a manually segmented reference, is 95.4%. Then this automatic tokenizer was 
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used instead of a fixed set of affixes, to create the ASR lexicon. Keeping the N most frequent words 
unsegmented allows to keep a good LM coverage while controlling, in the mean time, the vocabulary size. 

Figure 10 shows the ASR performance for a dialect of Arabic where the size of the ASR vocabulary 
(and thus the model complexity) is controlled using the method described above. The experimental setup is 
precisely described in [2] and ‘seg’ means no tokenization of the LM data (corresponding to a 
vocabulary beyond 64k). 
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Figure 10. ASR performance (%WER) for different LM complexities (vocabulary size). 

These results show that it is possible to reduce the vocabulary (and then the complexity) of an ASR 
system by applying a sub-word segmentation while keeping the same performance and even slightly 
decreasing the word error rate. This shows the potential of such a sub-word modeling approach when only 
sparse text resources are available for training language models. Such an approach could also be applied to 
other tasks like machine translation for instance. 

5. CONCLUSION 

This paper presented our methodology for ASR in the context of under-resourced languages. Our data 
collection methodology was explained. Then different techniques for bootstrapping acoustic models were 
presented: crosslingual and grapheme-based acoustic modeling. Firstly, we presented the potential of 
crosslingual independent and dependent acoustic modeling for Vietnamese language. Experimental results 
on Vietnamese ASR showed that when we have only a few hours of speech data in target language, 
crosslingual CI modeling works better. However, when we have more speech data, crosslingual CI modeling 
is outperformed by crosslingual CD modeling. We can also conclude that in both cases, crosslingual systems 
are better than monolingual baseline systems. We also investigated some techniques of grapheme-based 
acoustic modeling. To improve the performance of the graphemic acoustic models initialization, we used a 
word boundary detector to segment an utterance into words. This technique reduced some inter-word 
segmentation mistakes. Moreover, results obtained both from Vietnamese and Khmer ASR demonstrated the 
feasibility of the grapheme-based approach. Finally we also presented preliminary experiments in statistical 
language modeling for reducing the complexity of the models using sub-word units. The potential of such an 
approach was shown for dialectal Arabic where very few text data was available to train a statistical 
language model. 
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