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ABSTRACT

Geometry-based stochastic MIMO channel models using the

concept of multipath clusters are advantageous to model the

spatial structure of the channel accurately and in a intuitive

manner. However, they are difficult to parameterize. This be-

comes evident in current (quasi-)standard models, which pro-

vide default parameters to cover the environments of interest,

yet the model fit is not always convincing. The parameteriza-

tion is not accurate enough.

We present an automatic framework to obtain the mod-

els’ cluster parameters, which have significant impact on the

model accuracy. After applying the framework to indoor

MIMO channel measurements, we discuss the results for fol-

lowing model parameters: the cluster delay spread, the cluster

angular spreads, the number of paths within a cluster, and the

number of clusters at each time instant. We observe signif-

icant correlations between cluster parameters, which can be

used to considerably improve current channel models.

1. INTRODUCTION

Stochastic MIMO channel models based on physical consid-

erations recently became important because they allow to model

the spatial structure of the channel in a convenient way with

low complexity. Prominent models are the COST 273 chan-

nel model [1], the 3GPP SCM model [2] and the WINNER

channel models [3]. All these models use the concept of mul-

tipath clusters. Although the models provide “default param-

eters”, they lack a convincing fit with measurement data [4].

Improved parameterization techniques are vital for the suc-

cess of these models. We will show that especially the use of

correlated cluster parameters can help to improve the model

accuracy.

In this work we present a framework for identifying clus-

ters from measurements without user intervention and pro-
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pose a way to use them to parameterize cluster-based channel

models. Section 2 gives a short overview of the parameters in

the considered channel models. In Section 3 we introduce the

framework for evaluating model parameters from measure-

ments. We apply this framework on measurements, briefly

described in Section 4. In Section 5 we discuss the result-

ing cluster parameter values and the importance of correlated

cluster parameters. Finally, Section 6 concludes the paper.

2. GEOMETRY-BASED STOCHASTIC MIMO

CHANNEL MODELS

Current geometry-based stochastic MIMO channel models

such as the COST 273 or the WINNER channel model use

the concept of multi-path clusters to model the radio chan-

nel. Clusters are defined as a group of multipath components

(MPCs) showing similar parameters. Each MPC represents

a unique link between the Tx and Rx (double-directional ap-

proach, see [5]), described by the complex path weight, de-

lay, angle of departure (AoD), angle of arrival (AoA), and

Doppler shift (not regarded in this paper). The radio channel

is then modeled by a superposition of several clusters, each

consisting of multiple MPCs.

To model a — representative — scenario these clusters are

placed in either way, (i) in a specified geometry (euclidean

coordinate space), or (ii) in parameter space (delay and an-

gles). Both approaches are equivalent, having the parameters

for one approach we can adopt them for the other. In this

paper we use the parameter space.

Single MPCs within the clusters are placed randomly ac-

cording to prespecified distributions. The parameters of these

path distributions are the spreads of the clusters in delay,

AoA, and AoD (i.e. the cluster’s extent in space), the num-

ber of paths within a cluster, and the number of coexisting

clusters. In the following we denote this set of parameters

as “cluster parameters”. Since these parameters are used in

the models to generate new clusters, at least both the mean

and the standard deviation of the cluster parameters have to



be specified. As the cluster parameters may depend strongly

on each other [6], this correlation should also be taken into

account in the models.

The cluster parameters are usually external model param-

eters that have to be specified by the user. Unfortunately, these

parameters are not easy to extract from measurement data. In

the following we will describe an approach to solve this prob-

lem.

3. PARAMETERIZATION FRAMEWORK

The models described in the previous section all come with

some “default parameters”. While path loss, global mean

delay, and global delay spread can be estimated directly

from measurements, cluster parameters are more difficult to

extract, so some were empirically determined by educated

guesses (e.g. variance of the cluster angular spread, depen-

dence of angular spread on delay spread). We present a frame-

work to estimate the cluster parameters directly from mea-

surements.

The framework consists of following steps:

1. Conduct measurements in scenarios to be

parameterized

2. Estimate discrete (coherent) propagation paths using a

high-resolution parameter estimator

3. Cluster the propagation paths

4. Estimate cluster parameters

5. Estimate the distribution of the cluster parameters (in

extension of our work in [7])

ad 2 — We used the Initialization-and-Search-Improved

SAGE (ISIS) estimator on the measured impulse responses

for every time instant to obtain coherent propagation paths

for every position of the measurement route.

ad 3 — Using the clustering algorithm specified in [8] to

automatically identify clusters for every time instant of the

measurements.

ad 4 — For every cluster, we estimated the cluster power,

the total power of the considered snapshot, the number of

paths within a cluster, the number of coexisting clusters in

the considered snapshot, the cluster mean delay, mean AoA,

and mean AoD, the cluster rms delay spread, AoA spread and

AoD spread. Note that when estimating the mean and vari-

ance of angular parameters, the ambiguity around ±π has to

be taken into account.

ad 5 — We describe the distribution of each cluster pa-

rameter by its mean value, its standard deviation and its cor-

relation with other cluster parameters. These values can be

obtained by the well-known sample mean, sample variance

and sample correlation estimators. Note that this corresponds

to modelling the cluster parameters by one single (uncorre-

lated or correlated) multi-dimensional Gaussian distribution.

4. MEASUREMENTS

We conducted indoor MIMO wideband measurements at

2.55 GHz using an Elektrobit PropSound CSTM channel

sounder at the University of Oulu, Finland. Details about

the sounder settings and antenna configuration can be found

in [9, 7]. For the present paper we selected four particu-

larly interesting routes in different environments, displayed

in Figure 1, to compare the cluster parameters. The measure-

ments were time variant (except for the “stationary” scenario),

where we fixed the Rx while we moved the Tx along a route.

We decided to present three kinds of environments: (i)

Different offices (see Figure 1b); the cluster parameters

should be comparable, there. (ii) A cafeteria, (in Figure 1a

(left), showing the cluster parameters in a large room. (iii) A

laboratory scenario shown Figure 1a (right), which will serve

as example, where the modelling approach fails.

5. RESULTS

We applied the presented framework to the measurement data

and evaluated the cluster parameter distributions. In this pa-

per we discuss the mean and standard deviation of the cluster

parameters, and their correlations. Furthermore, we will show

the impact on a model when neglecting the correlation param-

eters. Finally, we shall demonstrate under which conditions a

cluster parameterization based on a single multidimensional

Gaussian distribution fails.

5.1. Cluster parameters

In Table 1 we provide the mean and standard deviations of the

cluster parameters.

First we evaluated each measurement route individually.

In the cafeteria we obtain a large number of clusters, which

can be attributed to the (mostly) LOS link. Clusters can be

well separated under these conditions. Clusters show large

delay spread with strong variances, because of the large size

of the room. The angular cluster spreads are around 10
◦,

where also the standard deviations are quite large. Because

of the LOS link, the average cluster power is larger than in

the other (NLOS) scenarios.

Both Office 1 and Office 2 show quite similar parame-

ters. In Office 1, more clusters were identified, which is due

to higher SNR and thus better resolution of clusters. Also

the cluster delay spread values are slightly smaller for Of-

fice 1, since the route was closer to the Rx. Both angular clus-

ter spread parameters (mean and standard deviation) are very

similar, which accounts for the quite similar spatial structure

of the channels.

The stationary measurements in the office shows quite dif-

ferent parameters because of the already high path loss. Only

propagation paths approaching the Rx with AoAs from the



Office 1 Office 2

Stationary

Rx

(a) Cafeteria (LOS) and Laboratory environment (NLOS) (b) Office scenarios

Fig. 1. Measured scenarios: (a) Left: Cafeteria (room length ∼ 9 m), metal tables and chairs, some people sitting at the tables;

(a) Right: Laboratory environment, Rx in the Cafeteria; (b) Office rooms (room width ∼ 4 m), amply furnitured

Table 1. Cluster parameters
# clusters # paths cluster mean rms cluster rms cluster rms cluster

in cluster mean power cluster delay AoA AoD

[dBm] delay / ns spread / ns spread / ◦ spread / ◦

Mean parameter values

Cafeteria 13.8 7.8 -50.0 75.3 10.0 9.3 10.8

Stationary 7.3 3.8 -69.9 176.8 2.9 2.8 10.6

Office 1 10.2 12.0 -58.5 85.2 6.0 14.9 17.5

Office 2 7.9 14.0 -58.7 130.4 9.4 14.2 19.0

Offices 8.5 9.7 -62.6 131.1 5.9 10.4 15.5

Parameter spread values

Cafeteria 4.3 6.6 7.6 32.5 11.1 8.7 9.2

Stationary 3.0 3.8 4.5 8.6 3.5 3.2 12.1

Office 1 4.7 7.4 5.0 12.0 2.6 8.8 10.3

Office 2 3.1 7.8 4.5 14.2 4.0 7.8 11.0

Offices 3.9 7.8 7.2 40.2 4.3 9.0 11.7

corridor were strong enough to be identified. Thus, the clus-

ter angular spread around the Rx was very small. Also in the

room we observe smaller cluster spreads. Note that also the

number of paths within a cluster is significantly smaller than

in other rooms.

Finally, we provide global parameters for the considered

office environment, averaged over all scenarios. For this, we

evaluated the cluster parameters for all office rooms jointly

by evaluating the distribution parameters from all clusters in

all office rooms. Note that the special propagation effects of

the Stationary room are lost by this averaging. However this

effect can be captured by taking the correlation of the cluster

parameters into account.

Figure 2 provides the correlation coefficients between the

cluster parameters for the averaged environment over all of-

fices, where red colors denote strong positive correlation, blue

colors denote negative correlations, and green color corre-

sponds to uncorrelated values. First, we observe significantly

more and stronger correlations than in a different environment

[6].
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Fig. 2. Cross-correlation values for the global office parame-
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We find that cluster power is positively correlated with the

the number of paths within a cluster, which is intuitive since

more paths can carry more power. We also observe a negative

correlation between the cluster power and the cluster mean

delay, which is physical, since paths coming with short de-

lays carry more power. Also, all the spread parameters are

positively correlated with each other. In contrast to an ear-

lier publication [6] we also find correlations with the mean

angular parameters indicating a dominant direction.

5.2. Impact on the model

We consider a simple cluster-based wideband MIMO chan-

nel model presented in [10]. We compare following ways to

parameterize clusters. First, we draw cluster parameters from

uncorrelated Gaussian distributions with means and variances

obtained from Table 1. Second, we use a correlated Gaussian

distribution to take correlations between cluster into account

according to Figure 2. Third, for comparison, we use a sum

of correlated Gaussian distributions, which corresponds to the

Gaussian kernel density estimator (KDE) method presented in

[10].

To validate the model parameterization, we use following

approach: (i) generate reference channels using the estimated

coherent reference paths, (ii) invoke the model and generate

modelled channels using the selected parameterization (un-

correlated cluster parameters, correlated cluster parameters,

KDE), (iii) compare the channels by using performance met-

rics.

In this paper we chose to generate 4×4 MIMO channels

with 20 MHz bandwidth. The channels are compared using

the mutual information (MI) [11], with constant Tx power and

10 dB (average) receive SNR. In the following we compare

the MI cdf for the different parameterization approaches.

We observe the following properties of the different pa-

rameterization approaches:

• For single office rooms, cluster parameter correlation

does not improve the model fit, because the correlations

are too weak and the scenario does not change signifi-

cantly (see Figure 3a). Even the KDE approach results

in nearly the same fit.

• For averaging the office rooms, parameter correlation

significantly improves the model fit. Especially power

and delay are strongly correlated. This has to be taken

into account for obtaining a good fit with measurement

data (see Figure 3b). Using uncorrelated cluster param-

eters, the diversity of the channel is overestimated.

• For the cafeteria scenario, cluster correlation improves

the model fit only slightly (see Figure 3c). Again, it fits

the diversity of the channel better. Also this time the

KDE parameterization results in a very good fit.

• When the underlying distribution of the parameters sig-

nificantly differs from a single (correlated or uncorre-

lated) Gaussian distribution, the model does not fit any

more. Figure 3d shows an example of such a scenario.

Here, two dominant receive directions occur (from the

lab and a significant backward reflection), which can-

not be accounted for by the parameterization approach

with a single Gaussian. When using the KDE approach

(with only 10 kernels), the model already fits the mea-

surements well.

6. CONCLUSIONS

We presented a framework to automatically obtain cluster

parameters for geometry-based MIMO channel models from

measurements. This allows to process large amounts of data

in reasonable time. After applying this framework to data

from an indoor MIMO measurement campaign we discussed

the means and standard deviations of the cluster delay spread,

the cluster angular spreads, the number of paths within a clus-

ter, and the number of clusters within a snapshot.

We found that averaging to obtain global parameters for

a diverse environment, removes particular properties of the

spatial structure of the channel. This deficiency is present in

all current models. By introducing correlations of the clus-

ter parameters, the model fit can be significantly improved in

certain scenarios.

However, for some scenarios, where the cluster param-

eters cannot be described by a single Gaussian distribution,

more sophisticated cluster parameterization approaches are

necessary.
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