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ABSTRACT

It is one of the biggest challenges of multi-user distributed
cooperative antenna (COOPA) systems to provide base sta-
tions (BSs) with downlink channel information for transmit
filtering (precoding). The analog pilot retransmission method
is efficient in terms of resources but is vulnerable to noise
enhancement effects. The precoder codebook based feedback
schemes are not applicable since they are developed for single
user cases. In this paper we propose a new feedback scheme
via a subspace based channel quantization method. The pro-
posed scheme adopts the chordal distance as a channel quan-
tizer criterion so as to capture channel characteristics repre-
sented by subspaces spanned by the channel matrix. We then
develop a channel quantizer codebook construction method
based on the Linde, Buzo and Gray (LBG) vector quantiza-
tion algorithm. Our new codebooks have better minimum dis-
tance properties than currently available Grassmannian code-
books. Simulation results show that the proposed subspace
based channel quantization method outperforms the analog
pilot retransmission method and the Euclidean distance based
channel quantization method.

1. INTRODUCTION

Cooperative antenna (COOPA) systems have recently become
a hot research topic, as they promise significantly higher per-
formance than conventional cellular systems [1]. The gain is
acquired by adopting intercell interference (ICI) cancellation
schemes, e.g., joint transmission/joint detection (JT/JD) algo-
rithms. In COOPA, several adjacent BSs are cooperating so
as to support multiple MSs which are located in the corre-
sponding cooperative area (CA). Therefore, COOPA can be
regarded as a multi-user multiple-input multiple-output (MU-
MIMO) systems, with multiple transmit antennas at the BS,
which are conventionally considered to be located in one BS,
spread over several BSs. This distributed nature, which is
attributed to the fact that several geographically distributed
BSs are used as transmit antennas, leads to full macro di-
versity gains. Besides this, COOPA systems have advanta-

geous features compared with conventional cellular systems,
like increased degrees of freedom, better ICI cancellationper-
formance, the rank enhancement effect of the channel matrix,
etc [1].

COOPA systems are based on the cooperation between
multiple distributed BSs. This means COOPA systems need
the fast and efficient backbone network as well as the central
unit (CU) which manages the cooperation amongst associated
BSs. The CU makes the overall network structure more com-
plex by adding one more layer in the hierarchy, and eventually
increases the costs. In [5], distributed organization methods
have been suggested to address this problem.

One of the main challenges of the distributed COOPA sys-
tem is channel estimation for the downlink channel. All of the
involved BSs in the CA need to know the full channel state
information to calculate the corresponding precoding weight
matrix. The analog pilot retransmission method has been sug-
gested and tested in [5], but the throughput of this method
reaches only 40 % of that of the ideal case, which requires
supplementary feedback schemes [1].

In this paper, we propose the subspace based channel quan-
tization method which proves to guarantee much higher per-
formance than the analog pilot retransmission method. The
MSs measure the downlink channel and quantize it by using
the predefined codebook. Then MSs send only the index of
the chosen code to all involved BSs. The BSs reconstruct
the channel matrix based on code indices collected from the
MSs. The proposed scheme can be used for cellular based
MU-MIMO systems as well, which involve one BS for down-
link data transmission.

Notation: Vectors and matrices are denoted by lower case
bold and capital bold letters, respectively.(·)T and(·)H de-
note transpose and Hermitian transpose, respectively. tr(·)
denotes the trace of a matrix.‖ · ‖2 and‖ · ‖F denote the
two-norm of a vector or a matrix and the Frobenius norm of
a matrix, respectively. The covariance matrix of the vector
processx is denoted byRx = E[xxH], whereE[·] is used
for expectation.IN is theN × N identity matrix and0M×N

stands for an all-zero matrix of sizeM ×N . IM×N is defined



asIM×N :=

[

IN

0(M−N)×N

]

for M > N . [A]i,j stands for

the(i, j)th entry of a matrixA. |S| is the size of a setS.

2. SYSTEM MODEL AND MOTIVATION FOR
CHANNEL QUANTIZATION METHOD

We consider a precoded MU-MIMO system in which a group
of BSs transmit data to multiple MSs simultaneously.NBS

BSs andNMS MSs haveNt andNr antennas each, respec-
tively. The data symbol block,s = [s1, . . . , sNtr

]T where
Ntr = NMSNr, is precoded by aNtt ×Ntr matrixW where
Ntt = NBSNt. Here the firstNr data symbols are intended
for the first user, the nextNr symbols for the second user, and
so on. When denotingiBS/iMS as the BS/MS index andit/ir
as the transmit/receive antenna index, respectively, we can de-
notehij wherei = Nr(iMS−1)+ ir, j = Nt(iBS−1)+ it as
the channel coefficient between theirth receive antenna of the
iMSth MS and theitth transmit antenna of theiBSth BS. The
NtrNtt channel coefficients can be expressed as theNtr×Ntt

channel matrixH with [H]i,j = hij . The received signals on
Ntr receive antennas which are collected in the vectory can
be formulated as

y = HWs + n, (1)

wheren is the additive white Gaussian noise (AWGN).
There are several available techniques developed for the

downlink transmit filtering in MU-MIMO systems. Linear
precoding techniques (e.g., the transmit matched filter (TxMF),
the transmit zero-forcing filter (TxZF), and the transmit Wiener
filter (TxWF)) have an advantage in terms of computational
complexity. Non-linear techniques (e.g., the Tomlinson - Ha-
rashima precoding (THP)) have a higher computational com-
plexity but can usually provide a better performance than lin-
ear techniques. Some linear techniques (e.g., the block diag-
onalization (BD) and the successive minimum mean squared
error precoding (SMMSE)) are developed for the case in which
there are multiple antennas at each receiver. The BD algo-
rithm is designed to eliminate multi-user interference (MUI)
[2]. The BD outperforms the TxZF and asymptotically ap-
proaches the sum capacity of the channel at high SNR. The
SMMSE performs better than some non-linear techniques (e.g.,
the successive optimization (SO) THP and the MMSE THP)
with relatively low computational complexity [3]. In our case,
we adopt the TxZF which completely suppresses the interfer-
ence at the receiver [4]:

{W, g} = arg min
{W,g}

|g|2tr(Rn)

s.t.:gHW = INtr
andtr

(

WRsW
H

)

= Ptx (2)

wherePtx, Rn, andRs are the maximum transmit power, the
covariance matrix of the noise, and the covariance matrix of
the data symbol, respectively. The transmit precoding matrix

W which satisfies the design criteria (2) is as follows.

W = g−1HH
(

HHH
)−1

,

g =

√

√

√

√

tr
(

(HHH)
−1

Rs

)

Ptr

(3)

The challenge here is that BSs should know the downlink
channel matrixH so as to construct the precoding matrixW.
The analog pilot retransmission method has been proposed as
a way of transferring channel state information [5]. As shown
in [5], the analog pilot retransmission method is vulnerable
to noise enhancement effects and this weakness of the analog
method brings about a significant performance degradation,
even though it is efficient in terms of required resources. As
a way of combating noise, the digital method can be used in-
stead of the analog method. The digital method here means
that MSs measure the downlink channel and encode this infor-
mation into the digital code and send it back to the BSs after
performing appropriate digital signal processing (modulation,
spreading, repetition, or channel coding, etc) to guarantee ro-
bust data transmission.

Recently, finite rate feedback strategies in MIMO systems
have been extensively investigated. Beamforming codebook
design methods are suggested based on Grassmannian pack-
ing [7] and systematic unitary design [8], which guarantee
substantial gains with just a small number of feedback bits.
All of these methods are developed for the single-user MIMO
(SU-MIMO) case, which assumes that a user has the knowl-
edge of the channel matrix. Our system requirements invali-
date this assumption, since we deal with MU-MIMO systems.
Thus it is more feasible for each individual MS to quantize its
own channel matrix and send it back to all associated BSs.
The BSs can calculate the precoding matrix by making use
of channel information reconstructed by collected feedback
messages.

There are several ways of quantizing channel matrices. A
straightforward method is to view the channel matrix as a set
of complex numbers, and to encode every complex number
individually. If we allocateNb bits for representing one float-
ing point number, we need2NbNMSNrNBSNt bits in total
for every subcarrier. This costs too much.

The alternative is to view the channel matrix as a set of
complex matrices, and to quantize every individual matrix by
looking up a predefined codebook. As explained above, the
overall channel matrix is aNMSNr × NBSNt matrix, and is
composed of the channel matrix for each user, which is of size
Nr × NBSNt. (4) depicts this relationship.

H = [H1, · · · ,Hj , · · · ,HNMS
]T , j: user index (4)

HereHj is the transpose of the channel matrix for userj,
which is aNBSNt × Nr matrix. If we allocateNcb bits for
the codebook, we needNcbNMS bits in total for every sub-
carrier. The channel quantization method is suitable for the



limited feedback in terms of required feedback bits, and the
conventional vector quantization (VQ) method can be applied
with some modifications.

3. SUBSPACE BASED CHANNEL QUANTIZATION
METHOD

As proposed in the previous section, MSj is supposed to
quantize its channel matrixHj . We view Hj not just as a
complex matrix but as a subspace which is spanned by its
columns. We perform a singular value decomposition (SVD)
to extract the unitary matrixUj which includes the basis vec-
torsUj,S spanning the column space ofHj (Hj : Ntt × Nr,
Uj : Ntt × Ntt, Uj,S : Ntt × Nr).

Hj = UjΣjV
H
j (5)

Uj = [Uj,SUj,0] (6)

The channel quantizer uses the chordal distance as a distance
metric, since we should measure the distance between sub-
spaces. There are other subspace distance metrics [6], but the
chordal distance is the only one which makes the VQ algo-
rithm feasible for designing the codebook [9]. The chordal
distance is defined as

dc(Ti,Tj) =
1√
2
‖TiT

H
i − TjT

H
j ‖F (7)

for matricesTi, Tj which have orthonormal columns.
The quantized version of the column space basis vectors

Uj,S is chosen to be the code which has the minimum chordal
distance with it. Thus, the subspace quantization process can
be written as

Ûj,S = Q(Uj,S) = arg min
Ci∈C

dc(Uj,S ,Ci) (8)

whereCi is an unitary matrix (CH
i Ci = INr

). Thus, the
code represents only the column space ofHj and the chan-
nel quantizer needs extra information to convey the channel
power information. The channel quantizer equation at user
j, which takes channel powers as well as subspace distances
into account, is given by

Ĥj = Ûj,SΣj,S (9)

whereΣj =

[

Σj,S

0(Ntt−Nr)×Nr

]

. Here,C is the codebook

of sizeN (N = 2Ncb ) which has the codeCi ∈ C
Ntt×Nr .

Σj,S ∈ R
Nr×Nr

+ is composed of the upperNr × Nr ele-
ments ofΣj . Σj,S is a diagonal matrix which hasNr posi-
tive real elements in its diagonal. This constitutes the channel
power information. The subspace based channel quantiza-
tion method works as follows. MSj finds the codeCi which
provides the minimum chordal distance withUj,S , and the
corresponding power information. Then it sends back aNcb

bit codebook index together withNr power information to all
associated BSs. The reconstructed downlink channel matrix
at the BSs is as follows.

Ĥ = [Ĥ1, · · · , Ĥj , · · · , ĤNMS
]T , j: user index (10)

Extensive simulation results show that the code index alone
is enough to achieve a potential performance without extra
channel power information when the link strengths (large-
scale fading due to path loss and shadowing) are known at
the BSs. In this case, the MS needs to send onlyNcb bits
feedback. The channel quantization formula can be simpli-
fied as

Ĥj = Ûj,S = arg min
Ci∈C

dc(Uj,S ,Ci). (11)

4. CODEBOOK CONSTRUCTION BASED ON
MODIFIED LBG VQ ALGORITHM

The Linde, Buzo, and Gray (LBG) vector quantization (VQ)
algorithm [10] is used to construct the codebookC. The LBG
VQ algorithm is an iterative algorithm based on the Lloyd al-
gorithm which is known to provide an alternative systematic
approach for the subspace packing problem [9]. As in [9],
we in this paper acquire the codebook through iteration. The
main difference of the proposed method is attributed to the
fact that the codebooks in [9] are precoder codebooks, while
the codebooks to be constructed here are channel quantizer
codebooks. The LBG VQ algorithm is based on a training se-
quence which is provided by channel realizations simulatedin
a Monte-Carlo approach, whereas the Lloyd algorithm in [9]
is based on an initial codebook which is obtained via a ran-
dom computer search or the currently best codebook. Thus,
codebooks obtained by the LBG VQ algorithm can better cap-
ture the statistics of the channel by using channel realizations
as a training sequence.

4.1. Design Problem

The LBG VQ based codebookC design problem can be stated
as follows. Given a source vector with its known statisti-
cal properties, given a distortion measure, given a codebook
evaluation measure, and given the size of the codebook, find
a codebook and a partition1 which result in maximizing the
minimum chordal distance of the codebook.

Suppose that we have a training sequenceT to capture the
statistical properties of the column space basis vectorsUj,S

of sizeNtt × Nr:

T = {X1,X2, · · · ,XM} (12)

whereXm ∈ C
Ntt×Nr is a sample ofUj,S which can be

obtained by taking a SVD of the channel matrixHj . The

1Thepartition of the space is defined as the set of all encoding regions.



channel matrix samples are generated by Monte-Carlo simu-
lations using SCMe2. The number of channel samplesM is
assumed to be large (e.g.,M ≥ 1000N ), so that all the sta-
tistical properties of the source are captured by the training
sequence. The codebook can be represented as the following.

C = {C1,C2, · · · ,CN} (13)

The each code has the same size as a training matrix (Cn ∈
C

Ntt×Nr ). LetRn be the encoding region associated with the
codeCn and let

P = {R1,R2, · · · ,RN} (14)

denote the partition of the space. If the source matrixXm

belongs to the encoding regionRn, then it is quantized to
Cn:

Q(Xm) = Cn, if Xm ∈ Rn. (15)

Our aim is to find a codebook of which the minimum chordal
distance3 is maximized. The minimum chordal distance of
the codebook is given by:

dc,min(C) := min dc(Ci,Cj), for Ci,Cj ∈ C,∀i 6= j.

(16)
The design problem can be stated as follows: GivenT and
N , find C andP such thatdc,min(C) is maximized.

4.2. Optimality Criteria

C andP must satisfy the following two criteria so as to be
a solution to the above mentioned design problem [10]. We
should note that the chordal distance is used instead of the
Euclidean distance as a distance metric.

• Nearest Neighbor Condition:

Rn = {X : dc(X,Cn) < dc(X,Cn′),∀n′ 6= n}
(17)

This condition says that any channel sampleX, which
is closer to the codeCn than any other codes in the
chordal distance sense, should be assigned to the en-
coding regionRn, and be represented byCn.

• Centroid Condition:

Cn = URINtt×Nr
(18)

whereUR is an eigenvector matrix of the sample co-
variance matrixR which is defined as

R :=
1

NRn

∑

Xm∈Rn

XmXH
m whereNRn

= |Rn|,

(19)

2extended 3GPP Spatial Channel Model [12]
3There are several subspace distance metrics, e.g., the Fubini-Study dis-

tance, the projection two-norm distance, and the chordal distance metrics. It
has been shown that the chordal distance is the only distancemeasure which
makes the iterative algorithm feasible [9].

provided that eigenvalues in the eigenvalue matrixΣR

of R = URΣRUH
R are sorted in the descending order.

This condition means that the codeCn of the encod-
ing regionRn should be theNr eigenvectors of the
sample cavariance matrixR corresponding to theNr

largest eigenvalues. The centroid condition is designed
to minimize the average distortion in the encoding re-
gionRn, whenCopt

n representsRn [9]. This process is
reproduced here for convenience.

Copt
n = argmin

C

1

NRn

∑

Xm∈Rn

d2
c(Xm,C)

= argmin
C

1

NRn

∑

Xm∈Rn

tr
(

INr
− CHXmXH

mC
)

= argmax
C

tr
(

CHRC
)

(20)

(18) is the optimum solution which minimizes the av-
erage distortion.

4.3. Modified LBG VQ Algorithm

The modified LBG VQ (mLBG VQ) design algorithm is an
iterative algorithm which finds the solution satisfying thetwo
optimality criteria in section 4.2. The algorithm requiresan
initial codebookC(0). C(0) is obtained by the splitting of an
initial code, which is the centroid of the entire training se-
quence, into two codes. The iterative algorithm runs with
these two codes as the initial codebook. The final two codes
are split into four and the same process is repeated until the
desired number of codes is obtained. The codebook design
steps are as follows for a givenT andε > 0 (‘small’ num-
ber).centroid(S) denotes the optimum code calculated for a
given encoding regionS.

1. (Preparation) LetN = 1 and calculateC∗
1 = centroid(T ).

2. (Splitting) Fori = 1, 2, . . . , N , setC(0)
i = (1 + ε)C∗

i ,

C
(0)
N+i = (1 − ε)C∗

i andN = 2N .

3. (Iteration) Set the iteration indexk = 0 and calculate
d
(0)
c,min(C).

(a) Findn∗ = argminn∈{1,...,N} dc(Xm,C
(k)
n ) for

m = 1, . . . ,M and setQ(Xm) = C
(k)
n∗ .

(b) Update the codes by finding the centroidC
(k+1)
n =

centroid({Xm : Q(Xm) = C
(k)
n }) for n =

1, . . . , N .

(c) Setk = k + 1.

(d) Calculated(k)
c,min(C) and ifd(k)

c,min(C) > d
(k−1)
c,min (C),

then saved(k)
c,min(C) andC

(k)
n for n = 1, . . . , N ,

and go back to step (a). Otherwise, go to step (e).



(e) SetC∗
n = C

(k−1)
n for n = 1, . . . , N as the final

codes.

4. Repeat steps 2 and 3 until the desired number of codes
is obtained.

The minimum distances of the codebooks are collected in Ta-
ble 1. It shows that the codebooks acquired by the modi-
fied LBG VQ algorithm have better distance properties than
Grassmannian codebooks listed in [11].

Table 1. The minimum codebook distancesdc,min(C)

(Ntt, Nr) Ncb mLBG VQ Grassmann
(2, 1) 3 0.3895 0.3820
(3, 1) 3 0.5706 0.5429

4 0.4882 0.4167

5. SIMULATION RESULTS

Simulations have been performed for the 2 BSs - 2 MSs and 3
BSs - 2 MSs cases. Two (three) BSs are cooperating to trans-
mit data signal for two MSs through the same resources at the
same time. Both BSs and MSs have a single antenna, so it
yields2 × 2 and2 × 3 overall channel matrices, respectively.
SCMe4 is used for the simulations and the proposed methods
are tested for an Urban Macro channel with a mobile speed
of 10 m/s. The system performance is evaluated in terms of
the received SINR at the MS. Simulations are performed for
30000 channel realizations and the culmulative distribution
function (cdf) at one MS is obtained. OFDMA is assumed
as the data transmission scheme and we focus on one sub-
carrier. The transmit power at the BS is set to be 10 W and
it is equally allocated to 1201 subcarriers. The cooperative
area (CA) topology is shown in Fig. 1. As in the conven-
tional cellular topology, one cell is composed of three sectors
and the hexagonal area, which is composed of three sectors
which are served by three BSs, forms a CA. Two MSs in the
CA are served by three BSs simultaneously. In case of the 2
BSs - 2 MSs case, two BSs which maintain the strongest two
links with MSs are chosen for downlink transmission. The
cell radius is 600 m and MSs are equally distributed in the
CA for every drop. The transmit zero-forcing filter formula
follows (3), based on downlink channel information which
is either perfect channel (pCh), or is provided by a down-
link channel estimation method which is shared by the BSs
through a prompt and error free backbone network (central-
ized CA, cCA), or is acquired by the analog pilot retrans-
mission method (distributed CA, dCA), or is captured and
reconstructed by looking up ann bit codebook (n bit chan-
nel quantization,nbCQ). The BSs are assumed to be aware of

4The MATLAB code provided in [13] supports a channel matrix genera-
tion function for links between multiple BSs and multiple MSs.

the large-scale fading of the channel, and the channel quanti-
zation process (12) is based on true channel information. The
codebooks are acquired by the modified LBG VQ algorithm.
The feedback link is error free and delay free.

Fig. 2 shows the cdf of the SINR for the 2 BSs - 2 MSs
case. At 50 % outage SINR, the 3 bit channel quantizer (3bCQ)
shows 5.3 dB gain over the analog pilot retransmission case
(dCA) and it is only 0.7 dB away from the centralized CA
(cCA). The channel matrix at MSj Hj(j = 1, 2) is in this
case a2×1 complex vector and this is represented by a code-
book of size23 = 8. Compared with the channel quantiza-
tion method, the resource efficient dCA case requires 3 pilot
tones per MS for FDD. Therefore, the proposed scheme out-
performs the pilot retransmission method without requiring
extra resources. Fig. 3 deals with simulation results of the3
BSs - 2 MSs case. The 3bCQ, 4bCQ, and 5bCQ cases have
3.2 dB, 5.0 dB, and 6.1 dB gains over the dCA case, respec-
tively.

The proposed method is to quantize the channel matrix
based on the chordal distance, and the LBG VQ algorithm
is modified as such. Conventional VQ methods use the Eu-
clidean distance instead. Is the subspace based method better
than the conventional method? A performance comparison
result is shown in Fig. 4. The Euclidean distance based CQ
(nbeCQ) adopts the Euclidean distance as a distance metric
for channel quantization. Its optimality criteria for codebook
construction are as follows, accordingly.

• Nearest Neighbor Condition:

Rn = {X : ‖X − Cn‖2
2 ≤ ‖X − Cn′‖2

2,∀n′ 6= n}
(21)

• Centroid Condition:

Cn =

∑

Xm∈Rn
Xm

∑

Xm∈Rn
1

(22)

The simulation results show that the subspace based CQ
has a substantial gain over the Euclidean distance based CQ.
At 50 % outage SINR, the 4bCQ and 5bCQ outperform the
4beCQ and 5beCQ by 2.9 dB and 2.6 dB, respectively.

6. CONCLUSIONS

In this paper, we considered precoded MU-MIMO systems
assisted by limited feedback. We proposed a subspace based
channel quantization method as a way of providing BSs with
downlink channel state information, which is applicable to
the distributed COOPA systems as well as MU-MIMO sys-
tems. The subspace based channel quantizer improves the
system performance significantly, compared to the analog pi-
lot retransmission method and the Euclidean distance based
channel quantization method. We also developed an efficient
codebook construction algorithm based on well known LBG
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VQ by adopting the chordal distance and modifying the op-
timality criteria accordingly. The codebooks generated by
the proposed algorithm have better distance properties than
Grassmannian codebooks that are currently available.
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