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ABSTRACT

The application of Space Division Multiple Access (SDMA)

to the downlink of future Orthogonal Frequency Division

Multiple Access (OFDMA) mobile radio systems is a promis-

ing solution to achieve high spectral efficiency. Besides en-

hancing system capacity, Quality of Service (QoS) require-

ments must also be respected to ensure reliable communica-

tion. In this work, a new SDMA strategy called Soft Drop-

ping Algorithm (SDA) is proposed, which is composed of an

SDMA grouping algorithm, namely the Greedy Correlation-

Based Algorithm (GCBA), a Joint Precoding with Soft Drop-

ping Power Allocation (JP-SD-PA) strategy based on soft

dropping power control, and an SDMA group size tracking

mechanism. It is flexible and takes into account both capac-

ity and QoS aspects. The proposed SDMA strategy is shown

to provide average capacity gains of 10% to 30%, as well as

SINR gains of 2 dB to 3 dB to 90% of the UTs in the system,

compared to an SINR Balancing Algorithm (SBA).

1. INTRODUCTION

The application of Space Division Multiple Access (SDMA)

to the downlink of future Orthogonal Frequency Division

Multiple Access (OFDMA) mobile radio systems is a promis-

ing solution to achieve high spectral efficiency. Using SDMA,

frequency resources can be simultaneously reused by several

User Terminals (UTs) separated in space by means of Mul-

tiple Input Multiple Output (MIMO) precoding techniques.

Moreover, these precoding techniques benefit from the flat

fading channel structure obtained due to Orthogonal Fre-

quency Division Multiplexing (OFDM) transmission.

In the following, a group of UTs sharing a given sub-

carrier through SDMA is termed an SDMA group. How well

UTs can be separated in space depends on the degree of spa-

tial correlation among their channels. If UTs’ spatial chan-

nels in an SDMA group are close to orthogonal, UTs can be
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efficiently multiplexed in space and capacity gains can be ob-

tained. Oppositely, if their spatial channels are correlated,

SDMA might bring no gains or even cause capacity losses.

Considering a Base Station (BS) with an nT -element An-

tenna Array (AA) and K single-antenna UTs, there is a to-

tal number of K channels that can be selected for build-

ing an SDMA group. Therefore, a total number of M =
∑G=nT

g=1

(

K
g

)

different SDMA groups are possible, where the

group size G is usually upper limited by nT . In general, find-

ing the optimum SDMA group is a hard combinatorial prob-

lem which requires to compare all the M SDMA groups with

each other, thus having exponential complexity [1, 2]. There-

fore, sub-optimal SDMA algorithms are usually designed to

build an efficient SDMA group with reduced complexity. In

these algorithms, the efficiency of an SDMA group is usually

measured by a grouping metric, which quantifies the degree

of spatial compatiblity among the UTs in the group.

For example in [1], different heuristic SDMA algorithms

are applied in a time division multiple access system having as

grouping metric the minimum difference between target and

estimated Signal-to-Interference plus Noise Ratios (SINRs)

of the UTs in a group; in [3], SDMA groups are organized

in a tree structure and group capacity or average Signal-to-

Noise Ratio (SNR) of the UTs are used as grouping metrics;

and in [4], the channel with the highest eigenvalue is first se-

lected and additional channels are sequentially grouped with

it in order of higher eigenvalues with and without successive

precoding. These and other proposals achieve high capac-

ity gains with non-exponential complexity, but rely on com-

plex grouping metrics that require channel decompositions or

computing precoding vectors [1, 3–5].

An efficient alternative to reduce complexity is employ-

ing grouping metrics based on the spatial correlation among

UTs’ channels. For example, in [6], a correlation metric is

calculated for UTs pairwise and the best group becomes the

one whose sum of the pairwise correlations among every pair

of UTs in the group is minimum; in [7], a weighted norm of

the spatial correlation metric of the UTs in a group is used



as grouping metric and the best group is found by a Best Fit

First (BFF) algorithm [1]. In [8], spatial correlation and chan-

nel gains are used as grouping metric in an algorithm which

finds the best SDMA group by solving a convex optimization

problem.

Also in order to limit complexity, a usual approach is

to limit or predefine the group size to one (or some) fixed

value(s), as e.g. in [2,4,5,9], thus avoiding to compare all M
groups. A considerable capacity difference might be verified

for different group sizes and, therefore, if the group size G
does not match the ideal one, SDMA performance might be

compromised [2–4]. For fixed group sizes, tracking the opti-

mum group size, as e.g. in [3, 8], is beneficial since it might

reduce the complexity of the SDMA algorithm and enhances

its performance.

SDMA is not only influenced by the composition of the

groups, but also by the applied precoding and power allo-

cation strategies. Different optimization criteria can be fol-

lowed, such as maximizing the sum capacity of the group un-

der a total power constraint or minimizing the total transmit

power under minimum rate constraints for UTs.

Since wireless communication services usually impose

some constraints for reliable communication, not only the ca-

pacity enhancement should be pursued by SDMA strategies,

but the Quality of Service (QoS) requirements of the UTs

must also be taken into account. QoS requirements can often

be expressed in terms of a target SINRs that must be attained,

e.g., to ensure tolerable bit error rate or delay.

In [10] and references therein, the problem of maximiz-

ing the minimum SINR of the channels in the SDMA group

with individual target SINRs and total power constraints is

solved by a joint optimization of precoding and power allo-

cation that exploits the duality between the Uplink (UL) and

Downlink (DL) of Multi-User (MU) MIMO channels. Also

in [10], a general feasibility condition for a set of target SINRs

is given, which depends on the spectral radius of a weighted

coupling matrix. In this context, whenever a set of target

SINRs is not feasible, at least one of the target SINRs must

be relaxed. Unfortunately, due to the problem structure, there

is no simple rule to decide which target SINR to relax, since

both precoding vectors and power allocation are jointly opti-

mized.

In [11], Soft Dropping Power Control (SDPC) is proposed

for distributed power control among a set of co-channel links

in a multi-cell Single Input Single Output (SISO) system.

In [12], SDPC is extended to the UL of a Single-User (SU)

MIMO system. SDPC has a power-dependent target SINR

that decreases with the allocated power. In this way, the links

requiring more power target at lower SINR values, thus giving

margin to a more efficient power usage. The SDPC incorpo-

rates a mechanism to automatically adjust the target SINR of

the involved links and clearly points out which link to drop

whenever necessary.

In this work, an SDMA strategy for the DL of MU MIMO

systems is proposed. The proposed strategy is divided into:

• a greedy SDMA grouping algorithm, named Greedy

Correlation-Based Algorithm (GCBA), which builds an

SDMA group with spatially compatible UTs’ channels

based on their spatial correlation;

• a Joint Precoding with Soft Dropping Power Allocation

(JP-SD-PA) which adapts the SDPC algorithm to the con-

sidered scenario using the joint precoding and power allo-

cation framework developed in [10];

• and a simple mechanism to track a suitable SDMA group

size and to drop links if necessary.

The remainder of this paper is organized as follows. In

section 2, the system model is described. In section 3, the

proposed SDMA strategy is presented. In section 4, some re-

sults are analyzed. Finally, section 5 draws some conclusions.

2. SYSTEM MODEL

This section describes the scenario considered in this work. A

single BS is considered in the modeling, with the interference

from other BSs assumed as Gaussian and being incorporated

directly as part of the Gaussian noise in the system. The BS

has an nT -element AA and there are K single-antenna UTs

associated with the BS. A single frequency channel is con-

sidered, which is shared in space by the UTs in an SDMA

group. The channel response is assumed to be flat and per-

fectly known at the transmitter. This scenario can be seen as

a single sub-carrier, or a chunk of adjacent sub-carriers [13]

for which a single sub-carrier is a good representative, in a

OFDMA system using Time Division Duplexing (TDD) and

having perfect channel estimation at the BS.

Each link between the BS and a UT k has an associated

vector channel response hk ∈ C
1×nT . Denoting transposi-

tion by (·)T
, the channel matrix HS ∈ C

K×nT of all UTs

together can be written by stacking the channel responses hk

as

HS =
[

hT
1 hT

2 . . . hT
K

]T
. (1)

The spatial correlation between two vector channels hi

and hj is measured by the normalized scalar product ρij [1,

2, 7, 8]. Let |·| denote the absolute value of a complex scalar

and ‖·‖2 denote the 2-norm. Then, ρij is given by

ρij =

∣

∣hih
H
j

∣

∣

‖hi‖2 ‖hj‖2

, (2)

which is used by GCBA in the next section as grouping met-

ric.

Building an SDMA group G corresponds to adequately

select a total of G ≤ nT vector channels hi of HS , i.e., to

optimally selecting G from the K rows of HS according to

the adopted grouping metric and problem constraints.

In the DL, the BS sends data symbols sg, g = 1, . . . , G,

to the UTs in the SDMA group G. The data symbols sg are



assumed to be uncorrelated with average power σ2
s = 1 and

are organized in the input data vector s ∈ C
G×1, which is

precoded using the modulation matrix M ∈ C
nT ×G, trans-

mitted through the SDMA group channel H ∈ C
G×nT , and

distorted by noise, which is represented by z ∈ C
G×1. z is

considered to be spatially white with average power σ2
z . The

transmitted signals are demodulated by the demodulation ma-

trix D ∈ C
G×G producing the estimated output data vector

ŝ = DHMs + z ∈ C
G×1 (3)

at the receivers.

Let diag {·} denote a diagonal matrix whose diagonal ele-

ments are given in the vector argument. Then, the modulation

matrix M can be written in terms of a precoding matrix U

and a DL power vector p as

M =
[

m1 m2 . . . mG

]

= Udiag {√p} , with (4a)

U =

[

m1

‖m1‖2

m2

‖m2‖2

. . .
mG

‖mG‖2

]

=
[

u1 u2 . . . uG

]

, and (4b)

p =
[

‖m1‖2
2 ‖m2‖2

2 . . . ‖mG‖2
2

]T

=
[

p1 p2 . . . pG

]T
. (4c)

Assuming Gaussian signaling and ideal matched filtering

at the receivers, the DL SINR of the gth UT in G is given by

γg =
pgu

H
g hH

g hgug

σ2
z +

G
∑

j=1,j 6=g

pju
H
j hH

g hguj

(5)

with hg the gth row of H, ug the gth column U, and pg the

gth element of p. The group capacity C(G) of the SDMA

group G is thus given by

C(G) =
G
∑

g=1

log2(1 + γg). (6)

In the next sections, (5) is used in the joint optimization

precoding and power allocation, and (6) is used to compare

the performance of the algorithms in terms of capacity.

3. SDMA STRATEGY

In this section, the proposed SDMA strategy is described.

An optimum SDMA strategy requires a joint optimization

of UTs’ channel selection, precoding, and power allocation,

thus being a hard non-convex non-linear optimization prob-

lem with prohibitive complexity.

For this reason, the strategy proposed here divides the

problem into an SDMA grouping problem, and a joint pre-

coding and power allocation problem. Moreover, dropping

SDMA

grouping

Joint precoding and power allocation

Power allocation

Precoding

UT

dropping

SDMA group

size tracking

Fig. 1. Block diagram of the proposed SDMA strategy.

one (or some) UTs if target SINRs cannot be met and track-

ing an adequate size for SDMA groups are also considered.

The block diagram of the proposed SDMA strategy shown in

Fig. 1.

Section 3.1 and section 3.2 describe the proposed SDMA

grouping algorithm and the joint precoding and power allo-

cation strategy, respectively. Section 3.3 presents the adopted

dropping criteria and the SDMA group size tracking mecha-

nism.

3.1. SDMA grouping algorithm

In this section, the GCBA is described. If joint precoding and

power allocation optimization is done, it is interesting to have

an SDMA algorithm that finds a group of spatially compatible

UTs based on a grouping metric that does not rely on precod-

ing vectors or allocated powers, since they will be adjusted

afterwards.

For a fixed group size G, an SDMA group G with G min-

imally spatially correlated channels is a good sub-optimal so-

lution. Denoting the 1-norm of a vector by ‖·‖1, such a group

of low correlated channels can be obtained by solving the in-

teger optimization problem

x⋆ = arg min
x

{

1

2
xT Rx

}

, (7a)

subject to: ‖x‖1 = G, (7b)

xc = 1, c ∈ 1, . . . , nR (7c)

xi ∈ {0, 1}, i = 1, . . . , nR, (7d)

where x =
[

x1 x2 . . . xnR

]T
is a binary selection vec-

tor. The constraint (7c) is introduced to ensure that a given

UT s be in G. For example, this UT can be the highest-priority

UT selected for transmission by the resource scheduler, or be

randomly selected. If x⋆ is the optimum solution of (7), the

optimum SDMA group G⋆ corresponds to select the rows hi

of HS for which x⋆
i = 1, i = 1, . . . ,K.

Solving (7) using integer or convex optimization [14, 15]

might require considerably high computational effort. Instead

of this, the Greedy Correlation-Based Algorithm (GCBA)

proposed here is used to build a sub-optimal SDMA group

composed of highly spatially uncorrelated UTs. It is a greedy

algorithm in which an initial UT, indexed by c, is firstly se-

lected, e.g., by the scheduler. Then, an SDMA group G is

built containing only this UT. After that, at each iteration of

GCBA, the UT least correlated with all the UTs already ad-

mitted to G is added to the group until the desired group size

G is reached. GCBA is described in Table 1.



Table 1. Greedy Correlation-Based Algorithm.

1. Set the SDMA group G = {c}.

2. For g = 1 to G − 1

a. Set G = G ∪ arg min
j∈{1,...,K}\G



P

i∈G

ρij

ff

.

GCBA builds the group for which joint optimization of

power allocation and precoding vectors is done in section 3.2.

3.2. Joint precoding and power power allocation opti-

mization

3.2.1. Joint Precoding with SINR Balancing Power Alloca-

tion (JP-SB-PA)

This section reviews the joint precoding and power allocation

optimization framework proposed in [10], on which the new

strategy proposed in this work is based. The strategy from

[10] is termed here as Joint Precoding with SINR Balancing

Power Allocation (JP-SB-PA).

In [10], an UL/DL duality theory is proposed for the

joint optimization of precoding vectors and power allocation.

Therein, the maximization of the minimum ratio
γg

νg
between

the actual SINR γg and the target SINRs νg of spatially mul-

tiplexed UTs under a total power constraint P is solved by

means of an iterative alternating optimization of precoding

vectors and power allocations. The problem is formulated in

DL as

{U⋆,p⋆} = arg max min
{U,p}

{

γg

νg

}

, g = 1, . . . , G, (8a)

subject to: ‖ug‖2 = 1, (8b)

‖p‖1 = P, (8c)

with the associated dual UL problem

{U⋆,q⋆} = arg max min
{U,q}

{

φg

νg

}

, g = 1, . . . , G, (9a)

subject to: ‖ug‖2 = 1, (9b)

‖q‖1 = P, (9c)

where the UL SINR φg is given by

φg =
qgu

H
g hH

g hgug

uH
g

(

G
∑

j=1,j 6=g

qjh
H
j hj + σ2

zI

)

ug

(10)

and q =
[

q1 q2 . . . qG

]T
is the uplink power vector.

In the following, let t denote the iteration index of the

described procedure. For a fixed UL power vector q, which

starts with an initial arbitrary value q = q(0), the optimum

precoding vectors in U(t)(q(t−1)) correspond to the Mini-

mum Variance Distortionless Response (MVDR) precoding

vectors [16] that maximize individually each φg(q
(t−1)), g =

1, . . . , G, in (10) [10]. Then, at iteration t the optimum q(t)

is obtained by solving

[

ΓΨT Γσ
1
P
1T ΓΨT 1

P
1T Γσ

] [

q

1

]

= λmax

[

q

1

]

(11)

where λmax is the dominant eigenvalue of the eigenproblem

(11), and

[Ψ]ij =

{

uH
j hH

i hiuj , i 6= j

0, i = j
, (12a)

Γ = diag
{[

ν1

uH
1

hH
1

h1u1

. . . νG

uH
G

hH
G

hGuG

]}

, (12b)

σ =
[

σ2
z . . . σ2

z

]T
, (12c)

with the index t dropped for notation simplicity.

This alternating optimization is repeated until λ
(t)
max −

λ
(t−1)
max ≤ ǫ and U⋆ is obtained. Then, using U⋆, the optimum

DL power vector is obtained by solving the eigenproblem

[

ΓΨ Γσ
1
P
1T ΓΨ 1

P
1T Γσ

] [

p⋆

1

]

= λmax

[

p⋆

1

]

(13)

[10]. In the case in which the target SINR is the same for

all the UTs in the SDMA group, i.e, νg = ν, g = 1, . . . , G,

the algorithm proposed in [10] balances the SINR γg of all

UTs on the maximum balanced SINR value γ⋆. This situation

occurs, for example, when all UTs in the SDMA group use the

same data service.

3.2.2. Joint Precoding with Soft Dropping Power Allocation

(JP-SD-PA)

This section presents the proposed JP-SD-PA strategy, which

is based on the SDPC algorithms proposed in [11, 12, 17].

Herein, it is proposed to employ the alternating optimiza-

tion framework of [10] to implement the JP-SD-PA strategy,

in which precoding vectors are determined in the same way as

with the JP-SB-PA strategy, i.e., by computing the UL MVDR

precoding vectors ug maximizing (10) for each individual UT

g. However, the UL powers qg allocated to each UT g are ob-

tained using SDPC [11]. The power allocation in the JP-SD-

PA strategy employs a power-dependent target SINR νg given

by

ν(t)
g = min

{

max

{

νm

(

p
(t−1)
g

pM

)α

, νm

}

, νM

}

with α =
log10(νM/νm)

log10(pm/pM )

(14)

where νm, νM and pm, pM are respectively the minimum and

maximum target SINRs and allocable powers of UT g. The



power allocation in UL used in the the JP-SB-PA strategy is

given by

q(t)
g = q(t−1)

g

(

ν
(t)
g

φ
(t−1)
g

)β

(15)

where β is a control parameter.

Different from JP-SB-PA, JP-SB-PA does not balance the

SINRs of the UTs, but allows the UTs in better channel condi-

tions to aim at higher SINR values, thus increasing the power

efficiency of the system. As with the JP-SB-PA strategy, UL

powers and precoding vectors are optimized alternately. After

q converges with a given precision ǫ to q⋆, the DL powers are

calculated.

Let Υ and η be defined respectively as

[Υ]ij =







1
ν⋆

i

, i = j
uH

j hH
i hiuj

uH
i

hH
i

hiui
, i 6= j

(16a)

η =
[

σ2

z

uH
1

hH
1

h1u1

. . .
σ2

z

uH
G

hH
G

hGuG

]T

. (16b)

Then, the optimum DL power vector p⋆ is given as

p⋆ =

(

[

Υ

1T
G

]T [
Υ

1T
G

]

)−1
[

Υ

1T
G

]T [
η
P

]

. (17)

In this way, it is not necessary to solve an eigenvalue prob-

lem to obtain the DL power allocation, as in (13) in the JP-SB-

PA strategy. The proposed JP-SD-PA strategy is described in

Table 2.

Table 2. JP-SD-PA strategy.

1. Set t = 0 and define with q
(t) = q

(0) = (P/G)1G.

2. Set t = t + 1.

3. Compute the UL precoding vectors u
(t)
g , g = 1, . . . , G, by solv-

ing the G MVDR problems.

4. Compute φ
(t−1)
g using (10), ν

(t)
g using (14), and then update UL

power q
(t)
g using (15).

5. Normalize q(t) = Pq(t)/
‚

‚

‚
q(t)

‚

‚

‚

1
.

6. If min
n˛

˛

˛
q
(t)
g − q

(t−1)
g

˛

˛

˛

o

> ǫ, g = 1, . . . , G, go to step 2.

7. Set u⋆
g = u

(t)
g and ν⋆

g = φ
(t)
g , g = 1, . . . , G.

8. Calculate p
⋆ using (17).

In order to ensure convergence of JP-SD-PA, q
(t)
g in (15)

must be an standard interference function I(q
(t−1)
g ) and sat-

isfy, for q ≥ 0 [17]:

• Positivity: I(q) ≥ 0.

• Monotonicity: I(q) ≥ I(q′), p ≥ p′.
• Scalability: aI(q) ≥ I(aq), a ≥ 1.

In [12], SDPC is extended to the UL of a SU MIMO

system and I(q) is shown to be standard whenever β <

(1 − α)
−1

. Since no structural differences exist between the

SU MIMO and the MU Single Input Multiple Output (SIMO)

channels, a proof very similar to that provided in [12] for the

UL of a SU MIMO channel is provided here for the UL the

MU MIMO considered in this work.

Positivity for I(q) follows directly, since all involved

terms are positive.

Dropping the iteration index t, considering a fixed precod-

ing matrix U according to the framework of [10], and consid-

ering qg ≥ q′g , monotonicity is obtained if

I(qg) ≥ I(q′g) ⇒
q(1+αβ−β)
g I ≥ q′

(1+αβ−β)
g I ⇔

1 + αβ − β ≥ 0 ⇔ β ≤ (1 − α)−1, (18)

where the term I is given by

I =













νm

pα
M

·
uH

g

(

G
∑

j=1,j 6=g

qjh
H
j hj + σ2

zI

)

ug

uH
g hH

g hgug













β

. (19)

For scalability,

aI(qg) ≥ I(aqg) ⇒
aq(1+αβ−β)

g I ≥ (aqg)
(1+αβ−β)I ⇔

1 ≥ 1 + αβ − β ⇔ β ≥ αβ ⇔ α ≤ 1. (20)

Indeed, considering the DL of a MU MIMO, obtaining

the same proofs is straightforward.

3.3. Dropping criteria and SDMA group size tracking

This section describes the dropping criteria and the scheme

used to track the adequate SDMA group size.

Depending on the radio channel conditions, not all the

links of the UTs in an SDMA group might be supported with

the required target SINR. In this case, target SINRs must

be adjusted or one or more UTs must be dropped from the

SDMA group.

In [10], the feasibility condition for a set of target SINRs

νg, g = 1, . . . , G, requires that λ−1
max ≤ 1 in (13). Because

(13) depends on U⋆, finding a set of feasible target SINRs that

enhances system capacity might become considerably com-

plex, requiring to solve (8) several times. Moreover, because

both power and precoding vectors are jointly adjustable, there

is no fixed rule to determine from which UT to reduce the tar-

get SINR.

After solving (8) using JP-SB-PA, which balances the

SINR of all UTs, either all or none of the UTs are supported.



Unfortunately, adjusting the target SINRs within the JP-SB-

PA strategy proposed in [10] while keeping its fast conver-

gence properties renders a hard optimization problem. It

might also be mentioned that using (14) to adjust targets with

JP-SB-PA lead to non-convergence of the strategy. Alterna-

tively, in order to avoid solving (8) several times for different

sets of target SINRs, it is proposed here to drop the UT g con-

suming the most power pg whenever the target SINRs are not

jointly feasible.

For JP-SD-PA, a suitable dropping criterion is to remove

the UT g with worst SINR γg . Since JP-SB-PA does not bal-

ance SINRs of the UTs and internally adjusts target SINRs,

that UT is also often the one consuming most power. Note

that dropping does not mean here insatisfaction for UTs, but

only relates to power-efficiency required for an UT to aim at

a given target SINR.

Whenever dropping occurs, the SDMA group size is re-

duced. On the one hand, a large group size might lead to

higher SDMA gains. On the other hand, a too large group size

leads to unnecessary computations due to successive drop-

pings. Therefore, it is suggested here to set the group size to

be used for building the next SDMA group with GCBA, e.g,

in the next time-slot, as

G(l+1) = min
{

nT , G(l) + 1
}

(21)

where l indicates the lth run or time-slot in which the pro-

posed strategy is applied. The complete strategy proposed

here is summarized in Table 3 and is termed Soft Dropping

Algorithm (SDA). Whenever JP-SB-PA is considered instead

of JP-SD-PA, the strategy is termed SINR Balancing Algo-

rithm (SBA).

Table 3. Summary for SBA/SDA strategies.

1. Start G(l) = G(0) = nT .

2. Set l = l + 1.

3. Build an SDMA group using GCBA from Table 1.

4. Optimize power and precoding vectors using JP-SB-PA from sec-

tion 3.2.1/JP-SD-PA in Table 2 from section 3.2.2.

5. If γg ≤ ν for some g, drop a UT and return to step 4.

6. Adjust G(l) according to (21) for the next group.

4. ANALYSIS AND RESULTS

In this section, the performance of SDA is studied through

simulations and compared with the performance of SBA. A

BS with a Uniform Linear Array (ULA) of nT = 8 elements

separated by half wavelength is assumed. A total number of

K = 32 single-antenna users are randomly placed in the cell

area. UTs have an average speed of 10 km/h. For both SDA

and SBA, at each time-slot (run) one UT, indexed by c, is ran-

domly selected as initial UT for GCBA and is not allowed to

be dropped from the SDMA group. All UTs are assumed to

always have data to transmit and to have the same target SINR

ν = 5 dB. A total power P of 30 dBm is assumed. pM and

pm are set to 30 dBm and -5 dBm, respectively. νm is set to

5 dB. Different values are assigned to νM in order to obtain

different values for α and get more insight on the performance

of SDA. Slow fading and path loss are assumed to be ideally

compensated by power control and only the fast fading is con-

sidered. Channel matrices are obtained using the WINNER

Phase I Model (WIM) [18] and one sample is considered at

each 0.25ms. The most relevant simulation parameters are

summarized in Table 4.

Table 4. Simulation parameters.

Parameter Value

System bandwidth 1.25 MHz

Center frequency 5 GHz

# of subcarriers 128

WIM scenario C2

Sampling rate 1 sample each 0.25 ms

# K of single-antenna UTs 32

UTs’ speed 10 km/h

# nT of elements of the BS

ULA

8

ULA element separation half wavelength

Element radiation pattern omni

SDMA grouping algorithm GCBA (see Table 1)

Initial SDMA group size G(0) 8

Joint precoding and power

allocation

JP-SB-PA, JP-SD-PA

β parameter (1 − α)−1

SINR target ν 5 dB

Minimum SINR target νm 5 dB

Maximum SINR target νM 15 dB, 35 dB, and 75 dB

Initial power allocation Equal Power Allocation (EPA)

Total transmit power P 1 W = 30 dBm

Minimum transmit power pm -5 dBm

Maximum transmit power pM 30 dBm

First, it is important to compare the performance of SBA

and SDA in terms of the achieved system capacity. In Fig. 2,

the average capacity of the system is shown considering SBA

and SDA for different average SNR values.

In Fig. 2, it can be seen that for high average SNR val-

ues SDA can provide average capacity gains of 10% to 30%

with respect to SBA depending on the parameter setting. For

low SNR values, it can be observed that SDA is only slightly

worse than SBA. The gains verified for high average SNR

values happen for two reasons. First, JP-SD-PA does not bal-

ance the SINR of the UTs in the SDMA group built by GCBA.

Thus, differently from JP-SB-PA, a power margin is created,

which allows for enhancing the throughput of the UTs in good

channel conditions, while UTs in bad channel conditions aim

at the minimum target SINR νm. Second, because SDA looks

for an efficiency trade-off between target SINR and power,
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Fig. 2. Average capacity of the system for the proposed strategy with

SBA and SDA for different average SNR values.

it might lead to droppings more often than SBA. Indeed, be-

cause SBA balances the SINR of the UTs, it minimizes drop-

ping of UTs. Ideally, SBA should be combined with a suit-

able mechanism to dynamically adjust the target SINRs of the

UTs. However, this problem is left open here and might de-

serve future investigation.

The increased dropping rate of SDA compared to SBA

can can also be observed by comparing the average SDMA

group sizes obtained for both strategies after dropping, which

is shown in Fig. 3.
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Fig. 3. Average SDMA group sizes after dropping obtained for SBA

and SDA for different average SNR values.

In Fig. 3, it can be seen that the SDMA groups in the

SDA case contain approximately one UTs less than in the

SBA case. Because the total transmit power is shared among

less UTs, the power margin exploited by SDA is further in-

creased leading to capacity gains. Indeed, other group size

adjustment mechanisms than the one proposed in section 3.3

could be used to enhance the performance of both SDA and

SBA strategies, e.g., as in [2, 7, 8].

Because the proposed SDA strategy is supposed to ensure

minimum QoS levels, it is interesting to see the distribution

of the SINR perceived by the UTs in the system. In Fig. 4, the

10th percentile of the SINR distribution of the UTs, i.e., the

SINR perceived by 90% of the UTs, is shown.
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Fig. 4. 10% outage capacity of the system for the proposed strategy

with SBA and SDA for different average SNR values.

From Fig. 4, it can be observed that the target SINR re-

quirement ν = 5 dB is respected for 90% of the UTs in the

whole range of SNR values investigated. Thus, in the pro-

posed SDMA strategy, both SDA and SBA meet very well

the objective of ensuring the minimum QoS levels. For the

reasons previously mentioned, SDA also provides SINR lev-

els for the UTs which are 2-3 dB higher than those of SBA.

As stated before, an interesting property of JP-SB-PA is

its fast convergence in SBA, which should be compared with

that of JP-SD-PA in SDA. In Fig. 5, the average number of

group sizes tested and the average number of iterations re-

quired for each tested group size is shown.

In Fig. 5(a), it can be noted that the number of SDMA

groups tested is kept equal to or below 2 confirming the effi-

ciency of the dropping and group size tracking mechanisms.

For low to moderate SNR values, the number of groups tested

by SBA and SDA is the same. For high SNR values, SDA

tests more SDMA groups since it drops UTs more often than

SBA, as previously explained. In Fig. 5(b), it can be observed

that depending on the parameter setting, the number of itera-

tions required by SDA might be smaller or larger than the one

required by SBA.

With SDA, for a constant νm, when νM increases α de-

creases, and consequently, β goes towards 0. This leads to

a smaller number of iterations required by JP-SD-PA to con-

verge in SDA, since the term ν
(t)
g /φ

(t−1)
g in (15) approaches

1. This can be noted for example in Fig. 5(b) for νM = 75 dB.

However, as it can be noted in Fig. 5(a), more SDMA groups

are tested. In the limit case, i.e., when β = 0, no power ad-

justments are done and q⋆ = q(0). In this case, the proposed

strategy reduces to SDMA grouping followed by equal power

allocation, by MVDR precoding, and by link droppings. Any-

way, it can be seen in Fig. 2 and Fig. 4 when νM = 75 dB that

such strategy could lead to considerable capacity gains and

since the randomly selected initial UT, indexed by c, in the

GCBA is not allowed to be dropped from the SDMA group,

long-term fairness is also ensured.
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Fig. 5. Average number of groups tested by SBA and SDA and aver-

age number of iterations required by SBA and SDA per group tested.

On the other hand, when νM approaches νm, it yields

α → 0 and β → 1. A larger average number of iterations

might be required by JP-SD-PA to converge in SDA, as illus-

trated in Fig. 5(b) when νM = 15 dB, as well as a reduced

number of SDMA groups might be tested, as it can be seen

in Fig. 5(a). In the limit case, i.e., when β = 1, SDA perfor-

mance converges to the the performance of SBA and balances

the SINRs of the UTs. This trend can be seen in Fig. 2 when

νM = 15 dB.

Therefore, by adjusting SDA parameters, increased flex-

ibility can be provided to the proposed SDMA strategy than

considering SBA, while both SDA and SBA present similar

complexity. An exact comparison of the complexity of both

SDA and SBA, as well as a comparison of their performance

for different target SINR νg for each UT g, deserve further

study and might be theme of future investigations.

5. CONCLUSIONS

In this paper, an SDMA strategy termed SDA has been pro-

posed. The SDA is composed of a simple SDMA grouping

algorithm, namely GCBA, a joint precoding power allocation

strategy called JP-SD-PA, and simple dropping and SDMA

group size tracking mechanisms. The performance of SDA

has been studied and compared to the performance of SBA.

SDA has been shown to provide average capacity gains of

10% to 30%, as well as SINR gains of 2 dB to 3 dB to 90% of

the UTs in the system. Moreover, by suitable parameter set-

ting, the proposed strategy might provide different trade-offs

between capacity gains and computational effort.
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