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Abstract— Tree search schemes are an efficient means of
solving the detection problem in MIMO systems. There exist two
fundamentally different approaches when using such techniques
for soft output detection. The traditional way is to employ a
single undirected search to generate a list of hypotheses on the
transmit signal. Alternatively, multiple directed searches can be
used – Smart Candidate Adding. This paper provides a detailed
assessment of the complexity and performance of different tree
search schemes, when following the single search approach. Based
on these results, suitable component tree search techniques for
Smart Candidate Adding are selected. It is shown that employ-
ing a breadth-first tree search scheme (more specifically, the
M-Algorithm) offers several advantages over other approaches.

I. I NTRODUCTION

Future wireless communications systems will make use
of multiple antennas at transmitter and receiver to increase
spectral efficiency. The main challenge for such MIMO sys-
tems lies in the non-orthogonality of the transmission channel,
which renders the correct separation of the transmitted data
streams at the receiver a challenging task. This task can be
solved effectively by using Turbo processing, i.e., exchanging
probabilistic feedback (soft information) between the inner
MIMO detector and the outer channel decoder. In this context,
tree search based detection techniques are known to enable
a performance close to channel capacity, while avoiding the
prohibitive complexity of the a posteriori probability (APP)
detector. Sphere [1], sequential [2] and M-algorithm based
detection [3] are representative examples of such schemes.

However, the application of the Turbo principle requires the
detector to generate precise information on the reliability of
each of the received bits. This poses a significant challenge
for the straightforward “list” extensions of the aforementioned
algorithms: In order to ensure a high accuracy of the soft
output, the list size has to be chosen very large – which
obviously entails high detection complexity. Therefore, it was
proposed in [4]–[6] to generate the soft output by using
multiple instances of a Schnorr-Euchner sphere detector, each
of which searches only for a single leaf node (list size 1). At
first, a search for the MAP estimate is performed, followed
by a set of searches for counter-hypotheses to this estimate.
The term Smart Candidate Adding (SCA) has been coined
for this strategy in [4]. In this contribution, we extend this
proposal to other tree search based detection techniques and
discuss which algorithms are best suited to achieve a favorable
trade-off between performance and detection complexity.

The remainder of this paper is structured as follows:
Section II discusses the system model and parameters used for
performance evaluations. Section III provides an introduction
to tree search based MIMO detection, as well as an assessment
of the performance and complexity achievable with different
schemes. This is followed by a description of Smart Candidate
Adding in Section IV. Section V and VI present results
for the case of non-iterative and iterative detection-decoding,
respectively. We finally draw conclusions in Section VII.

II. SYSTEM MODEL

Consider aNT × NR MIMO system based on a BICM
transmit strategy: the vectoru of i.i.d. information bits is
encoded and interleaved. The resulting code bit stream is
partitioned into blocksc of NT · L bits and mapped onto
a vector symbolx whose components are taken from some
complex constellationC. Here,L denotes the number of bits
per symbol, allowing to distinguish betweenQ = |C| = 2L

different constellation points. We consider transmissionover
a flat fading channel. In the equivalent base-band model, the
received signaly is given by:

y = Hx + n (1)

where H ∈ C
NR×NT is the channel transfer matrix which

is assumed to be perfectly known at the receiver. The en-
tries of H are realizations of zero mean i.i.d. complex
Gaussian random processes of variance1 (passive subchan-
nels). The average transmit energy is normalized such that
E{xxH} = Es/NT I. The vectorn ∈ C

NR×1 represents the
receiver noise whose components are zero mean i.i.d. com-
plex Gaussian random variables with varianceN0/2 per real
dimension:E{nnH} = N0 I. The signal-to-noise ratio (SNR)
at each receive antenna is hence given by SNR= Es/N0.
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Fig. 1. System model with BICM transmitter and iterative receiver.



To ensure comparability of results, we use a setup equivalent
to the one in [1], [2]: A rate 1/2 PCCC based on(7R, 5)
convolutional codes is employed for transmission over a
4 × 4 MIMO channel which is spatially and temporally i.i.d.
fading. The information block size (including tail bits) is9216
bits. The PCCC decoder uses 8 internal iterations (logMAP
decoding). In the iterative setup, 4 iterations between detector
and decoder are performed.

III. T REE SEARCH BASED MIMO D ETECTION

A. Fundamentals

The task of the detector is to calculate the a posteriori
probability for each of the code bitscm,l in x. Since we are
dealing with binary numbers, this information is conveniently
expressed in the form of log-likelihood ratios (LLRs):

L(cm,l|y) := ln
P [cm,l = +1|y]

P [cm,l = −1|y]

≈ max
x∈X

+1

m,l

{

−‖y − Hx‖2

N0

+

NT ·L
∑

i=1

lnP [ci]

}

− max
x∈X

−1

m,l

{

. . .

}

. (2)

where the second line follows from the application of the so-
called max-log approximation. Here,X±1

m,l denotes the set of
2NT ·L−1 symbolsx ∈ X for which cm,l = ±1. Evaluating
(2) by a brute-force approach (maxLogAPP detection) is
well known to require an effort growing exponentially in
the number of transmitted bits per vector symbol. However,
only a few hypotheses inX±1

m,l actually maximize each of
the respective terms in (2). Several close-to-optimal detection
strategies therefore construct a subset listL ⊂ X from which
the LLRs are determined. The subset should on the one hand
include only a fraction of the elements fromX to minimize
complexity. On the other hand, it should be large enough
to allow approaching the true detector LLRs as closely as
possible, to maximize performance. Let the size of the listL
be denoted asM = |L|. Tree search based MIMO detection
techniques constructL using a back-substitution approach.
After a QR-decomposition ofH, the LLRs can be determined
using the per-antenna metric incrementsΛm:

L(cm,l|y) ≈ max
x∈L∩X

+1

m,l

{

NT
∑

1

Λm

}

− max
x∈L∩X

−1

m,l

{

NT
∑

1

Λm

}

which are referred to asbranch metricsand are given by

Λm = − 1

N0

∥

∥

∥

∥

ỹm −
NT
∑

j=m

rm,jxj

∥

∥

∥

∥

2

+
L
∑

l=1

ln Pr[cm,l] (3)

with ỹ = QHy. The detector starts in layern = NT and works
its way up until layern = 1 is reached. For each branch
in the tree,Q different choices are possible for the signal
estimatexm. The detection process can hence be interpreted
as a search for leaf nodes in a tree structure. Different types
of tree search based detectors can be implemented by using

the path metrics
∑NT

m=n Λm to control which tree nodes are
added to the working stack and in which order.

A major problem for all these schemes are missing counter-
hypotheses: wheneverL ∩ X±1

m,l = ∅, the magnitude of the
LLR for the corresponding bit cannot be determined from
the entries ofL. The standard way of addressing this issue
is to simply clip the magnitude of the soft output to a certain
predefined value [1]. However, the performance of the system
is very sensitive to the choice of the clipping level, especially
for smaller list sizes (see [3] and Section VI).

B. Classification of Tree Search Strategies

Tree search algorithms have been the subject of extensive
study already in the 1960ies, in the context of sequential
decoding. Based on the framework presented in [7], we discern
the following three representative classes of algorithms:

• Depth-first searchis a scheme which only considers a
single tree node at a time. This node is extended until
its path metric falls below a given threshold, in which
case the algorithm back-tracks and extends the tree in
a different direction. The sphere detector [1], [8] is an
instance of this approach. The challenge lies in finding
an appropriate value for the threshold (orsphere radius).
A very attractive solution is to start with an extreme
value and successively refine the threshold during the tree
search, based on the path metrics of found leaf nodes [9].

• Metric-first searchkeeps track of a number of nodes
simultaneously, and always extends the node which has
currently the largest path metric. The list sequential
(LISS) detector [2] implements this strategy. The very
high storage requirements are the main disadvantage of
this technique. As soon as the number of considered paths
exceeds the size of the working stack, the paths with the
smallest metrics have to be dropped [2], or the search
must be stopped and the LISS declares an erasure [10].

• Breadth-first searchextends the tree layer-by-layer. At
each depth, theM nodes with the largest path metrics
are retained and all other nodes are dropped. The classical
example for this approach is the M-Algorithm [3]. The
advantage of this technique is the fixed detection com-
plexity. However, the achievable performance is limited
by error propagation, particularly for low values ofM .

Note that the first two schemes have a variable complexity,
which might be undesirable from an implementation perspec-
tive. Furthermore, both the average and (the potentially very
high) worst case complexity depend on the operating SNR.

C. Preprocessing and Enumeration Aspects

Layer ordering and MMSE preprocessing can be used to
improve the performance-complexity trade-off achievablewith
tree search schemes. More specifically, they will enhance
performance for schemes with fixed or (tightly) upper bounded
complexity [11], and reduce complexity for schemes with
variable complexity [9], [12]. However, the use of MMSE
preprocessing introduces a bias on the calculated metrics,
which should be removed to maximize performance [11].



In order to facilitate the use of efficient enumeration strate-
gies (see below), the tree search should be performed on a
real-valued system model of doubled dimensions and a real-
valued constellation of size

√
Q (see e.g. [9] for details).

For the case of higher order modulation, a further substantial
complexity reduction is enabled by using a Schnorr-Euchner
enumeration strategy [8]: the child nodes of a parent node
are generated in descending order of their branch metricsΛm.
While this technique has been mainly studied in the context
of sphere detection, it is readily applicable to all tree search
schemes. In fact, it was shown in [13] that the Schnorr-Euchner
LISS detector without length bias term visits the least number
of tree nodes among all optimal search algorithms.

For the M-Algorithm, the Schnorr-Euchner strategy can
be pragmatically implemented as follows: First, for each of
the M kept nodes, the child node with the largest metric is
generated, resulting in a total ofM new nodes. A threshold
is set to theM th largest path metric. Subsequently, the next
M child nodes are generated. For each parent node where
the metric of the new child node is below the threshold, the
extension process can be stopped. The threshold is updated
and the process continues until no further child nodes need
to be generated. The achieved complexity reduction factor is
around

√
Q/3 for 64-QAM transmission, compared to

√
Q/2

for the LISS and the sphere detector. Note, however, that as
soon as a priori information has to be incorporated into the
branch metrics, implementing a Schnorr-Euchner enumeration
strategy requires the explicit calculation of the metrics for all
children of a parent node and subsequent sorting.

D. Comparison of Techniques

Results for the performance of different tree search tech-
niques are provided in Figure 2 for a non-iterative detection-
decoding setup. All schemes employ Schnorr-Euchner enumer-
ation and a sorted QR decomposition [14] for preprocessing.
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Fig. 2. Performance of tree search detection (4 × 4 MIMO, 64-QAM).
Dashed curves: ZF preprocessing, solid curves: MMSE preprocessing.

The complexity of the Schnorr-Euchner sphere detector (SE-
SD) and the LISS has been upper bounded to double the
complexity of an M-Algorithm which generates a list of the
same sizeM . This bound was chosen based on the analysis of
the distribution of the SE-SD and LISS complexity for the case
of hard output detection (M = 1, results not shown). It has
been found to yield reasonable performance for a4×4 MIMO
setup with constellation sizes from 4-QAM up to 64-QAM.

For a list size ofM = 2, the performance of all three
investigated tree search schemes is enhanced by using MMSE
preprocessing. The best performance is achieved by the LISS
detector. For larger list sizes (M = 16), the gain from using
MMSE preprocessing decreases for both the LISS and the
M-Algorithm (this has also been noted in [11]). For the LISS,
there is even a slight loss w.r.t. the ZF case. This is due to the
relatively low worst case complexity of the LISS for the case
of unbounded complexity. The imposed upper bound on the
number of branch metric computations has therefore almost
no impact and loss in performance due to the sub-optimality
introduced by MMSE preprocessing [9] is the dominating
effect. For the sphere detector, however, the gains from using
MMSE preprocessing are higher for larger list sizes. This isa
direct result of the radius determination strategy: The sphere
radius can only be fixed onceM leaf nodes have been found.
This results in a high worst case complexity for large values
of M , if the initially found leaf nodes are far away from the
MAP estimate (as is the case for ZF preprocessing). It can
also be seen that the performance of all investigated schemes
is very similar forM = 16, if MMSE-SQRD preprocessing
is employed.
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Fig. 3. Performance-complexity trade-off for different treesearch techniques
(4× 4 MIMO, 64-QAM). All schemes use MMSE-SQRD preprocessing.

Figure 3 shows the performance and complexity (in terms
of the required number of branch metric computationsNM ) of
the three investigated tree search schemes. For the LISS and
the sphere detector, the upper markers indicate the imposedup-
per bound (i.e., the worst-case complexityNmax

M ). The lower



markers indicate the average complexityE{NM}. Consistent
with the results from [13], the complexity of the LISS is
in general lower than that of the SE-SD. The complexity
reduction enabled by using MMSE preprocessing is around
20% (results for the ZF case not shown). Note that the average
complexity of all schemes is typically within a factor two of
each other, with some advantages for the M-Algorithm for very
small list sizes, and the LISS for large list sizes. In light of
the high storage and memory access requirements of the LISS,
the sphere detector and the M-Algorithm emerge as the most
promising techniques from an implementation perspective.

Observe that for the high raw BERs (around 10%) at which
powerful coding schemes operate, the average complexity of
the sphere detector is comparable to that of the M-Algorithm.
The often claimed lower average complexity of the sphere
detector does only hold in the high SNR regime, at target BERs
which might be uninteresting for practical applications. Fur-
thermore, the M-Algorithm is typically run without Schnorr-
Euchner enumeration, which renders the comparison unfair in
favor of Schnorr-Euchner sphere detection.

IV. SMART CANDIDATE ADDING

A. Fundamentals

From (2) it is easily seen that the LLRs at the output of the
maxLogAPP detector may also be written in the form:

L(cm,l|y) = cMAP
m,l

({

−
∥

∥y − HxMAP
∥

∥

2

N0

+

NT ·L
∑

i=1

lnP [cMAP
i ]

}

− max
x∈X

−MAP
m,l

{

−‖y − Hx‖2

N0

+

NT ·L
∑

i=1

lnP [ci]

})

.

(4)

with xMAP as the hypothesis which maximizes the a poste-
riori probability (theMAP estimate), cMAP the corresponding
bit pattern andX−MAP

m,l the set of potential counter-hypotheses,
for which cm,l = −cMAP

m,l . The maxLogAPP detection problem
may hence be solved by first finding the MAP estimate and
then performingNT ·L searches which cover only a subset of
the transmitter signal set. This fact has already been observed
in [15] in the context of a semi-definite relaxation approach.
A direct implementation of (4) has been proposed in [5], [6],
employing a radius-based Fincke-Pohst sphere detector [8]
to determine the MAP estimate and the counter-hypotheses.
However, this approach faces the problem of choosing an
appropriate value for the sphere radius. Furthermore, the work
concentrated on the case of QPSK transmission in a4 × 4
MIMO setup, where the MaxLogAPP detection problem has
still manageable complexity (see also results in Section VI).

In [4], it was proposed to use a Schnorr-Euchner sphere
detector for the searches, thus avoiding the radius determi-
nation problem. The technique was also applied to higher
order modulation (16- and 64-QAM), where it became evident
that some bounds on the number of visited nodes have to
be imposed in order to avoid unreasonably high detection

complexity. This is a first hint that the sphere detector may not
be best suited as tree search scheme for the SCA approach.

A beneficial “side effect” of Smart Candidate Adding is that
it entirely avoids the problem of missing counter-hypotheses.
However, bounding the tree search complexity may still leadto
overestimated LLR magnitudes, which would necessitate the
use of LLR clipping. Fortunately, the performance of reduced
complexity Smart Candidate Adding has been found to be very
robust to the choice of the LLR clipping level.

B. Choice of Component Techniques

In principle, any combination of the techniques introduced
in Section III is possible for use in the first and the subsequent
search stages of the SCA approach. From the available options,
the following assignment of techniques is expected to achieve
a favorable trade-off between performance and complexity:

• The search for the MAP estimatewill cover the whole
signal setX and should be done such that errors in the
hard output of the MIMO detector are avoided, i.e., the
MAP estimate has to be found with high probability. This
can be assured by using either a sphere or LISS detector
with upper bounded complexity, or an M-Algorithm with
large enough list size.

• Each singlesearch for a counter-hypothesiswill cover
only a constrained signal setX−MAP

m,l . This is the compu-
tationally most expensive part, since the involved effort
scales with the number of transmitted bits per vector
symbol. The use of a LISS detector is less attractive for
solving this task, due to its high storage requirements and
the fact that the algorithm may produce erasures if a too
strict upper bound on the complexity is imposed.

Motivated by the above arguments, the focus in the subse-
quent investigations will be on using a Schnorr-Euchner sphere
detector or an M-Algorithm for the tree search. It is evidently
possible to obtain comparable results by using a LISS detector
in the first search stage. The difference in complexity can be
determined based on the results presented in Section III.

V. NON-ITERATIVE DETECTION-DECODING

Consider first the case of Schnorr-Euchner sphere detection
(this is the original SCA proposal). Figure 4 provides results
for the complexity of the search for counter-hypotheses. The
challenges faced by this approach are clearly visible: while
for some bits, the average tree search complexity is still
acceptable, it is extremely high for others. The peaks in the
complexity distribution corresponds to the most reliable bits in
each layer (Gray mapping is used). This behavior is expected,
as a high reliability is synonymous to a large distance of
the counter-hypothesis to the MAP estimate, and thus a high
number of nodes which have to be visited. The total average
complexity of this scheme is on the order of104 branch metric
computations – a factor 5-10 higher than a standard sphere
detector with list sizeM = 64 which achieves comparable
performance (cf. Figures 3 and 5).

In order for the SE-SD based SCA approach to become
competitive, it is thus necessary to accept some inaccuracy
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in the soft output and upper bound the complexity of the
tree searches. In the following, the termNMAP

M refers to
the number of branch metric computations in the search for
the MAP estimate whileNCH

M is the complexity of each of
the individual searches for a counter-hypothesis. Performance
results for such a setup are presented in Figure 5. A maximum
of NCH

M = 64 branch metric computations for the second
stage searches suffices to achieve performance within 0.25dB
of MaxLogAPP detection (results forNMAP

M , NCH
M → ∞).

It can also be seen that investing onlyNMAP
M = 30 branch

metric computations is enough to find the MAP estimate with
high probability – increasing the complexity of the first search
stage toNMAP

M = 90 yields hardly any gain.
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The minimum complexity setup withNMAP
M = 30 and

NCH
M = 8 still achieves a performance within 1dB of the

MaxLogAPP detector. Note that withNCH
M = 2NT = 8,

the searches for the counter-hypotheses will only find the
constrained SIC solution (or the specific Babai point, hence
the term SCA-Babai used in [4]). The distinct advantage of
this configuration is that imposing constraints on the valueof a
certain bit in layerm only affects decisions in layers which are
detected later in layersn < m. Some of the calculated branch
metrics may thus be re-used for several of the second stage
searches. This is illustrated by the results in Figure 6 (diamond
markers): the complexity of the SCA-SE-SD withNCH

M = 8
is only around 150 branch metric computations, compared to
around 200 which one would expect (the configuration with
NCH

M = 32 requires around 800 branch metric computations).
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Reducing the complexity of the search for counter-
hypotheses is thus crucial to achieving a good performance-
complexity trade-off. In this respect, using the M-Algorithm
offers several advantages over the sphere detection based
approach. Firstly, it enables to further increase the re-use factor
between the first and the second tree search stage (we use
the notationM1 = a,M2 = b for the two employed list
sizes in the following). In order to reduce error propagation
effects, the search for the MAP estimate has to be performed
with a medium value ofM (say, M1 = 4). In contrast to
the sphere detector case, a number of counter-hypotheses will
hence already be available and the second stage searches have
only to be performed for a subset of the bits. It might be
argued that the SCA-SE-SD approach may also use a value of
M > 1 in the first search stage. However, we have seen that
the sphere detector is unattractive for generating lists ofsmall
size. Furthermore, due to the layer-by-layer operation of the
M-Algorithm, the above stated reuse strategy is also applicable
in the second search stage, in contrast to the sphere detector



which descends and ascends the tree structure as necessary.
Finally, the detection complexity is fixed, which might be
advantageous for real-time implementation.

The achieved complexity-performance trade-off is illus-
trated in Figure 6 (M2 = 1 except where indicated). It can
clearly be seen that the M-Algorithm based SCA approach
(SCA-M) generally requires much less complexity to achieve
performance comparable to the SCA-SE-SD approach (a factor
3-4 reduction in complexity is possible). However, it is also
apparent that the required effort is not substantially lower than
that of conventional tree search schemes (cf. e.g. the setup
with M1 = 8,M2 = 1 compared to the M-Algorithm with
M = 16). The main advantages of the SCA approach are
hence the lower storage space requirements due to the smaller
list sizes, plus the high potential for parallelization of the
second stage tree searches.

VI. I TERATIVE DETECTION-DECODING

Consider now the case of an iterative MIMO receiver. Four
detector-decoder iterations are performed. Figure 7 illustrates
the sensitivity of conventional tree search schemes to the
choice of the LLR clipping level. The loss resulting from
choosing the clipping level too high (Lclip = 3/3.5/5 for
M = 2/4/64, respectively) is roughly 0.5dB for smaller list
sizes, thus potentially setting off a large part of the gain
obtained by increasing the list size1. The clipping levels which
maximized performance were found to beLclip = 2/2/4 for
M = 2/4/64, respectively.
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The performance of SCA is largely invariant to the choice
of the clipping level (results not shown). It must of course be
set high enough to avoid a decrease in mutual information. A
value ofLclip = 5 was found to yield satisfactory performance

1Note that a constant clipping level of 8 has been used in [1], vs. a constant
level of 3 in [3]. Both solutions are clearly suboptimal.

(a higher value did not improve performance significantly).
For the case of iterative detection-decoding, the tree search
complexity is in general higher than for the non-iterative case,
due to the fact that efficient node enumeration strategies cannot
be used (cf. the M-Algorithm results withM = 2 in Figure 3
and Figure 8; the increase is roughly

√
Q/2 = 4).

For M-Algorithm based Smart Candidate Adding, however,
this inefficiency can be exploited to the scheme’s advantage.
The initial search for the MAP estimate generates child nodes
with all possible

√
Q bit combinations at each layer (note

that a real-valued system model is employed). Since for the
considered case of an M-Algorithm, constraints on the valueof
a certain bit do not propagate towards the tree root, the second
stage searches can be directly started from those “dead-ends”
of the initial search for the MAP estimate.

Figure 8 shows performance-complexity results for the case
of 64-QAM transmission. Results for conventional tree search
schemes are plotted as reference. For the LISS, the fixed
complexity configuration from [10] was employed: the tree
search was run until the number of paths reached the stack
size. Furthermore, the noise bias term proposed in [16] was
used. The general trends are comparable to the non-iterative
case: the average complexity of all conventional tree search
schemes is within a factor of two of each other, if compa-
rable performance is to be achieved. The SCA-M approach
allows to achieve performance very close to MaxLogAPP
detection already when usingM1 = 4 and M2 = 1. The
complexity is roughly the same as that of an M-Algorithm or
a LISS achieving similar performance. Note that the setting
with M1 = 16 and M2 = 1 allows to achieve the same
performance as a conventional M-Algorithm withM = 64, but
requires only half the number of branch metric computations.
The complexity of the search for counter-hypotheses is still
substantial, such that the application of the SCA approach is
mainly attractive if close-to-optimal performance is targeted.
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Results for the case of 4-QAM transmission are provided
in Figure 9 for the sake of completeness. Note that the given
complexity figures for the conventional tree search schemes
will be comparable also for the non-iterative case, as all
schemes enumerate (at least) two child nodes per parent, even
when using Schnorr-Euchner enumeration. Again, the average
complexity of all investigated schemes is in the same order
of magnitude. The LISS with fixed complexity and noise bias
term is a very attractive solution, if only the required number
of branch metric computations is considered. Smart Candi-
date Adding based on the M-Algorithm essentially achieves
MaxLogAPP performance already when usingM1 = 2 and
M2 = 1. The complexity is roughly 50% lower than that of
the LISS which achieves the same performance. Observe that
the complexity reduction compared to a MaxLogAPP detector
is “only” on the order of factor 5. In light of the additional
overheads involved in the presented tree search schemes, a
brute force approach might still be attractive for a practical
implementation, see [17].
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Fig. 9. Performance-complexity trade-off for conventional and SCA based
tree search detection (4× 4 MIMO, 4-QAM, MMSE-SQRD preprocessing).

VII. C ONCLUSIONS

In this contribution, we showed that Smart Candidate
Adding is a flexible and efficient way of achieving near-
capacity performance in MIMO systems. Performance and
complexity results were provided for SCA based on the M-
Algorithm and a Schnorr-Euchner sphere detector. Based on
the obtained results, M-Algorithm based tree search detection
is judged to be the most attractive solution for a practical
implementation of the Smart Candidate Adding approach.
Compared to conventional tree search schemes, the complexity
in terms of the number of branch metric computations can
be reduced by a factor of 1.5-2 in an iterative detection-
decoding setup. Furthermore, storage space requirements are
smaller, and the search for counter-hypotheses offers a high

potential for parallelization. Regarding the relative merits of
the “list” versions of the sphere detector, the LISS, and the
M-Algorithm, it was shown that the average complexity of all
schemes is typically within a factor of two of each other (for
the considered4 × 4 MIMO setup; appropriate upper bounds
on the tree search complexity have to be imposed for the LISS
and the sphere detector). Due to the lower storage requirements
and sorting effort, the M-Algorithm and the sphere detector
appear to be the most attractive techniques for a real-time
implementation.
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