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ABSTRACT

In this paper we study the problem of maximizing a weighted
sum of rates under a sum power constraint in the multiple
input multiple output (MIMO) downlink while rate require-
ments have to be met for a subset of users. This setting
reflects a more sophisticated problem of resource allocation
combining an efficiency objective with strict Quality of Ser-
vice (QoS) constraints. It is shown that the problem can be
formulated as a convex optimization problem. Unlike in the
case of pure weighted rate-sum maximization (WRSM), the
question of feasibility arises. Moreover, the optimum Dirty-
Paper Coding (DPC) order is not given by the ordering of
the initial weights, but can be derived from the Lagrangian
multipliers combined with the initial weights. An efficient
algorithm based on primal-dual optimization is proposed
which provably converges to the global optimum. The con-
vergence properties are illustrated by means of numerical
simulations.

1. INTRODUCTION

Not only theoretical interest but also the relevance for future
wireless cellular systems such as IEEE 802.16e/m (WiMAX)
and 3GPP Long Term Evolution drove recent investigations
of the MIMO downlink. In this context a major question of
importance is how to allocate resources in an optimal fash-
ion so that ultimate limits could be achieved under ideal-
ized assumptions and given constraints. The insights gained
from these considerations can serve as a guideline for the
design of real systems and development of signal process-
ing algorithms.

From a theoretical point of view, the MIMO downlink
can be modeled as a MIMO broadcast channel (BC). If the
transmitter is not restricted to linear signal processing,the
system is not interference limited and nonlinear Dirty Pa-
per Coding (DPC) can be performed assuming that perfect
channel state information (CSI) is available at the transmit-
ter as well as at the receivers. It is known that this scheme
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achieves the entire capacity region of the MIMO BC [1].
Finding optimum resource allocations for the MIMO BC
turns out to be challenging due to the complicated mathe-
matical structure of the BC and itsnon-degradednesscaused
by the spatial degrees of freedom. However, it was shown
in a line of work that the capacity regions of MIMO BC
and its dual MIMO multiple access channel (MAC) having
hermitian transposed channel matrices coincide [1–4]. Fur-
ther, duality transformations relating the particular capacity
achieving power allocations in the BC to the ones in the
MAC were provided so that all problems can be solved in
the dual MIMO MAC which has a more favorable struc-
ture [4].

The problems tackled up to now can be roughly subdi-
vided into two classes:fairnessandefficiencyoptimization.
In fairness-based optimization problems the objective com-
prises the expression

ffair(R1, ..., RM ) = min
m

Rm

γm

, (1)

whereRm is the rate allocated to userm andγm is its QoS
demand in terms of rate. If there is no additional constraint
the ratio isbalancedfor all M usersR1

γ1

= ... = RM

γM
lead-

ing to fairness independent of the current channel realiza-
tion. So thesymmetric capacityof the MIMO BC was stud-
ied in [5], which restates in fact the rate balancing problem.
In [6] the fairest corner point and DPC order of the sum ca-
pacity plane was studied. In addition, the power minimiza-
tion problem under rate requirements can be interpreted in
this context withR1

γ1

= ... = RM

γM
= 1 being a fairness

constraint [5,7,8].
On the other hand, efficiency problems do not take into

account the expression in (1). The objective consists of a
weighted sum of rates

feff (R1, ..., RM ) =
∑

m

qmRm (2)

where qm is some user weighting factor. The most im-
portant example is throughput maximization. All users are
equally weighted and sum capacity is taken as the efficiency



measure; algorithms were presented for the MIMO MAC
with individual power constraints in [9] and for the MIMO
BC with a sum power constraint later in [10]. Algorithms
for maximizing a weighted sum of rates were proposed in
[11] and very recently in [12] for the MISO case. Moreover
sum power minimization under a throughput constraint can
be seen as an efficiency optimization problem [13].

In this paper, we bring together both criteria. The ob-
jective has the form (2) but additionally using (1) strict QoS
constraints in terms of rates are taken into account

ffair(R1, ..., RM ) ≥ 1.

This problem was studied already for the single antenna or-
thogonal frequency division multiplexing (OFDM) BC in
[14] and first steps towards the MIMO case were made in
[8], where the ideas from [14] using the concept of marginal
utility functions was applied to the MIMO-OFDM BC. How-
ever, the convergence to the global optimum could not be
proven. Furthermore, the presented algorithm is quite de-
manding. Here we solve the problem exploiting concepts
from optimization theory for convex non-differentiable func-
tions and provide a provably convergent algorithm based
on the ellipsoid method originally introduced by Khachiyan
[15].

The remainder of this paper is organized as follows.
Section 2 describes the MIMO BC and MAC system model
and introduces the uplink-downlink duality. In Section 3
the two antagonistic resource allocation strategies are pre-
sented, while in Section 4 the joint problem is studied. Nu-
merical examples are illustrated in Section 5 and Section 6
concludes this paper.

1.1. Notation

Sets are represented by calligraphic letters. Lower case bold
letters represent vectors and upper case bold letters denote
matrices. A � 0 means thatA is a positive semidefinite
matrix,| · | is the determinant andtr(·) denotes the trace op-
erator. Applied to sets|A| is the cardinality ofA. All loga-
rithms are to the basee. A complex variablec = a + jb is
said to be circular symmetric complex Gaussian distributed
n ∼ CN (0, 1) if its real and imaginary part are indepen-
dently distributed witha ∼ N (0, 1/2) andb ∼ N (0, 1/2).

2. SYSTEM MODEL AND UPLINK-DOWNLINK
DUALITY

2.1. System model

Consider a frequency flat discrete MIMO broadcast chan-
nel with M receivers, each owningnR antennas and a base
station equipped withnT transmit antennas.

Then the signal received by userm is given by

ym(t) = Hm(t)
M
∑

n=1

xn(t) + nm(t)

whereHm(t) ∈ CnR×nT is themth user’s channel,xm(t) ∈
CnT ×1 is the signal dedicated to userm andnm ∈ CnR×1

denotes the additive noise having i.i.d. circular symmetric
complex Gaussian entries with unit variance.

The dual MIMO multiple access channel (MAC) is given
by

r(t) =
M
∑

m=1

HH
m(t)sm(t) + z(t)

wherer(t) ∈ CnT ×1 is the signal received at the base sta-
tion, sm(t) ∈ CnR×1 denotes the signal transmitted by user
m andz(t) ∈ C

nT ×1 is again an i.i.d. circular symmetric
complex Gaussian additive noise process.

In both scenarios it is assumed that the channelH(t) =
[H1(t), ...,HM (t)]T is known perfectly at both ends of the
link. Then the base station can perform DPC in the down-
link, rendering harmless interference of previously encoded
users. Equivalently, the base station can apply successive
interference cancellation (SIC) in the dual uplink. Then itis
known that the capacity can be achieved in the downlink as
well as in the uplink using codebooks with i.i.d. Gaussian
entries as the number of channels uses goes to infinity.

2.2. Duality of MIMO MAC and MIMO BC

Assuming that the number of channel uses is sufficiently
large during the coherence time of each fading block, the
block indext can be omitted in the following assuming that
capacity can be achieved asymptotically.

The capacity region of the MIMO MAC is given by

CMAC(H, P̄ ) =
⋃

P

m tr(Qm)≤P̄
Qm�0

{

R :

∑

m∈S

Rm ≤ log

∣

∣

∣

∣

∣

I +
∑

m∈S

HH
mQmHm

∣

∣

∣

∣

∣

∀S ⊆ {1, ..., M}
}

(3)

where
Qm = E

{

smsH
m

}

is the covariance matrix of the signal transmitted by userm
andP̄ is a sum power constraint. Assuming the same sum
power constraint̄P for both channels, it is known from [1]
that the capacity region of the Gaussian MIMO BC coin-
cides with the capacity region of a dual MIMO multiple



access channel (MAC) with hermitian transposed channel
realizations

CBC(HH , P̄ ) ≡ CMAC(H, P̄ )

whereCMAC(H, P̄ ) is defined in (3). Moreover it is known
that any point achievable with a certain DPC order and a
given power allocation in the MIMO BC can be achieved
with the reverse SIC order and a different power allocation
in the MIMO MAC. The transformations relating the two
transmission strategies to each other were derived in [4].

Thus all problems can equivalently be studied in the
dual MIMO MAC and the subscripts·MAC and ·BC will
be omitted from now on.

3. TWO CONFLICTIVE RESOURCE
ALLOCATION PRINCIPLES

In general, any point on the boundary ofC(H, P̄ ) is a so-
lution to a weighted rate sum maximization problem for a
certain set of weightsq = [q1, ..., qM ]T :

max

M
∑

m=1

qmRm subj. to R ∈ C(H, P̄ ). (4)

The optimization problem in (4) yields a point on the bound-
ary ofC(H, P̄ ) corresponding to a tangent hyperplane with
normal vectorq. It can be formulated as a convex program
and solved efficiently. Choosingq = [1, ..., 1] refers to the
important special case of throughput maximization. This is
illustrated in Figure 1). It is well known that for any fixed
power allocation, i.e. for any set of fixed transmit covari-
ance matrices{Q1, ...,QM}, the achievable rate region is
a polymatroid limited by2M − 1 constraints. Due to the
polymatroid structure it can shown that the optimum DPC
order (BC) is given byπ such that

qπ(M) ≥ ... ≥ qπ(1)

where userπ(1) is encoded first followed by userπ(2). This
insight is crucial because it ensures the convexity of the pro-
gram.

It is of considerable interest to solve (4) since the bound-
ary of the capacity region represents the set ofefficientrate
tuples (i.e. the Pareto-optimal rate tuples). Moreover, the
weights can be interpreted asrate rewardsand may be cho-
sen according to any weighting criterion. In particular it is
known that the scheduling strategy following (4) and using
as weightsq the instantaneous queue lengths under quite
mild conditions achieves the maximum region of stabiliz-
able arrival rates [16,17]. Motivated by the relevance of (4),
different algorithms have been developed (see e.g. [12] and
references therein). However, note that varying fading real-
izations may result in very unfair rate allocations even for
throughput maximization.
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Fig. 1. Illustration of exemplary efficiencyq = [1, ..., 1]T

and fairnessγ = [1, ..., 1]T optimization for random 2 user
channel. Solving polymatroids highlighted.

On the other hand the minimum rate margin can be max-
imized leading to afair rate allocation:

maxmin
m

Rm

γm

subj. to R ∈ C(H, P̄ ). (5)

This approach yields a rate tuple on the boundary ofC(H, P̄ )
with allocated rates proportional to the desired set of QoS
γ = [γ1, ..., γM ]T . As (4) likewise (5) can be stated as a
convex program [5]. An algorithmic optimization is a bit
more demanding and relies on the saddle point property
the optimization of the (non-differentiable) dual function.
Choosingγ = [1, ..., 1]T leads to the equal rate tuple, i.e.
thesymmetric capacity.

Both approaches are illustrated exemplarily in Figure 1.
It can be observed that depending on the channel realiza-
tions the solutions to (4) and (5) choosingq andγ to be the
all-ones vector may differ drastically.

4. WEIGHTED RATE-SUM OPTIMIZATION WITH
MINIMUM RATES

Both resource allocation principles - (4) and (5) - have cer-
tain drawbacks. In (4) instantaneous QoS-requirements be-
ing independent of the current channel realization are not
considered which might lead to very unfair rate allocations
for users with bad channels even if their rate reward is high.
On the other hand in (5) the statistics of the fading process
do not play any role: the current channel realizations have
no influence on the relation of attained rates, which prevents
to use forms of temporal/multiuser diversity.

In order to resolve these shortcomings, we combine the



two principles and consider the following problem:

max

M
∑

m=1

qmRm

subj. to min
m∈S

Rm

γm

≥ 1 S ⊆ {1, ..., M}

R ∈ C(H, P̄ )

(6)

The setS comprises all usersm with a strict QoS require-
mentγm, which might be caused e.g. by the service cur-
rently provided. The transmit power is limited tōP . Un-
fortunately, (6) can not be stated explicitly in terms of the
transmit covariance matrices{Q1, ...,QM}.

4.1. Convexity and feasibility

For ease of notation we introduce the QoS vectorγ ∈ RM

with
γm = 0 ∀m /∈ S

in the following. Taking into account the constraints the
feasible set can be made explicit yielding

Rf (H, P̄ , γ) = C(H, P̄ )
⋂

i∈S

{R ∈ R
M : Ri ≥ γi} (7)

whereH is a set of channel realizations,̄P a sum power
budget andγi are QoS requirements. The capacity region
C(H, P̄ ) is a convex set per definition and the QoS con-
straints define half spaces. ThusRf (H, P̄ , γ) is a convex
set, since it comprises the intersection of convex sets. For
an illustration ofRf (H, P̄ , γ) see Figure 2.

Using (7) the main problem in (6) can be rewritten as

max
R∈Rf (H,P̄ ,γ)

M
∑

m=1

qmRm. (8)

Since (8) consists of the maximization of an affine function
over a convex set it is a convex program. As already pointed
out in [8], the optimization is nevertheless nontrivial since
the formulation is only implicit.

Necessary and sufficient for feasibility is the non-empty-
ness of the feasible setRf (H, P̄ , γ). Thus the problem in
(6) is feasible if and only if

P̄ ≥ Pmin (9)

where

Pmin = min P

subj. to γ ∈ C(H, P ).
(10)

sinceP̄ < Pmin immediately leads toRf (H, P̄ , γ) = ∅.
The condition in (9) can be easily checked solving (10).

A direct formulation for (10) was given in [8] yielding
2M − 1 constraints each corresponding to one of the partial
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Fig. 2. Illustration ofRf (H, P̄ , γ) for γ = [3 1]T and
C(H, P ) as in Figure 1.

sums in the definition ofC(H, P̄ ) given in (3). An alterna-
tive approach was presented in [7], where the authors opti-
mized the Lagrangian dual function. This method will turn
out to be useful in the following.

4.2. Optimization in the dual domain

Similar to [5, 7] the crucial idea is to solve (6) in the dual
domain. To this end consider the Lagrangian of (6)

L(R, µ) =

M
∑

m=1

qmRm +
∑

i∈S

µi(Ri − γi).

Note that it is assumed thatR ∈ C(H, P̄ ), which keeps the
sum power constraint implicit. Maximizing with respect to
the primal variables (i.e.R) yields the dual function

g(µ) = sup
R∈C(H,P̄ )

L(R, µ)

where the supremum can be replaced by the maximum since
C(H, P̄ ) is compact. Now define coefficients

q̃m =

{

qm + µm m ∈ S
qm otherwise

(11)

summing up the Lagrangian multipliersµ and the initial
weightsq. Then the dual function can be rewritten as

g(µ) = max
R∈C(H,P̄ )

M
∑

m=1

q̃mRm −
∑

i∈S

µiγi. (12)

Obviously (12) is an affine version of (4) which can be ef-
ficiently solved. However, the dual function may be non-
differentiable at least for someµ. Thus optimization meth-
ods which do not rely on derivatives or gradients have to



be used. In general any cutting plane method is suitable for
minimizing (12).

In the following we make use of the ellipsoid method,
which has been applied several times recently [5, 7]. The
ellipsoid method generates a sequence of shrinking ellipses
containing the solution. It can be interpreted as a kind of
cutting plane method, which rules out half spaces according
to the evaluation of a subgradient1. At an arbitrary point̂µ
a subgradient can be found using the definition of the dual
function: LetR̂ be the solution to

R̂ = arg max
R∈C(H,P̄ )

L(R, µ̂).

Then

g(µ) = max
R∈C(H,P̄ )

L(R, µ)

≥ L(R̂, µ)

= g(µ̂) +
∑

i∈S

(µi − µ̂i)(R̂i − γi).

(13)

Defining the vector

ν = R̂ − γ (14)

it can be easily seen using (13) that

ν ∈ ∂g(µ̂),

where∂g(µ̂) is the subdifferential ofg(µ) atµ̂. Thus, given
µ̂, the half space of dual parameters corresponding to

µ : (µ − µ̂)T
ν ≥ 0

can be ruled out.
The entire procedure is summarized in Algorithm 1. In

the following subsection the algorithm initialization is stud-
ied, which is not trivial due to the possibly very limited size
of the feasible set. Furthermore we comment on the fifth
step of Algorithm1.

4.3. Algorithm initialization: bounds on the optimum
Lagrangian multipliers µ

∗

In order to apply the ellipsoid or any other cutting plane
method a necessity is that an initial set containing the so-
lution can be specified. To this end upper bounds on the
Lagrangian multipliers are needed. In many cases this is
not a major problem, since a feasible point may be easy to
find. Unlike in [5] where the search can be limited to the
unit sphere, it is not trivial to find an initial ellipsoid cov-
ering the optimal Lagrangian multipliersµ∗ in the first step
of Algorithm 1. The following proposition provides a bound
on the optimum dual variablesµ∗:

1For further details the interested reader is referred to [18, 19].

Algorithm 1 MIMO WRSM with Minimum Rates
(0) check feasibility by solving (10)
if problem is feasiblethen

(1) initialize µ
(0) according to

µ(0)
m =

{

θm/2 m ∈ S
0 otherwise

with θm defined in (20) and choose an initial ellipse
M(0) such that

||Γ(0)1/2

(x − µ
(0))|| ≤ 1

for all x with 0 ≤ xm ≤ θm ∀m = 1, ..., M .
while desired accuracy not reacheddo

(2) with q̃(n) defined in (11) solve

R(n) = arg max
C(H,P̄ )

M
∑

m=1

q̃(n)
m Rm (15)

(3) determine subgradientν
(n) according to

ν
(n) = R(n) − γ (16)

(4) update ellipse

Γ(n+1) =

|S|2 − 1

|S|2

(

Γ(n) +
2

|S| − 1

ν
(n)

ν
(n)T

ν(n)T
Γ(n)−1

ν(n)

)

(17)

with new centroid

µ
(n+1) = µ

(n) +
1

|S|
Γ(n)−1

ν
(n)

√
ν(n)T

Γ(n)−1

ν(n)
(18)

(5) assure thatµ(n+1) ∈ RM
+

end while
end if

Proposition 1. Let

µ
∗ = arg min

µ�0
g(µ)

be the optimum dual variables, withg(µ) defined in (12).
Assume that there exists a rate tupleR ∈ relintRf (H, P̄ , γ).
Then

0 ≤ µ∗
m ≤ θm, m ∈ S (19)

where

θm =

∑M
n=1 qn

(

Rsu
n (P̄ ) − Rn

)

Rm − γm

(20)

with Rsu
n (P̄ ) being the maximum single user rate corre-



sponding to the water-filling solution

Rsu
n (P̄ ) = max

Q�0:tr(Q)≤P̄
log
∣

∣I+HH
n QHn

∣

∣ . (21)

Proof. An upper bound ong(µ∗) can be found as follows.

g(µ∗) =L(R∗, µ∗)

=

M
∑

n=1

qnR∗
n +

M
∑

n=1

µ∗
n(R∗

n − γn) (22)

≤
M
∑

n=1

qnRsu
n

The last inequality follows from the fact that the second ad-
dend in (22) is zero andRsu

n ≥ R∗
n for all n.

On the other hand we have

g(µ∗) =L(R∗, µ∗)

≥L(R, µ∗)

=

M
∑

n=1

qnRn +

M
∑

n=1

µ∗
n(Rn − γn) (23)

≥
M
∑

n=1

qnRn + µ∗
m(Rm − γm)

Combining (22) and (23) and solving forµ∗
m leads to (19).

Note that (21) is very easy to solve andRsu
n (P̄ ) can be

calculated using water-filling over the inverse eigenvalues
of HH

n Hn. In principle any upper bound on
∑M

n=1 qnR∗
n

can be used: For example

M
∑

n=1

qnR∗
n ≤ max

n
qn

M
∑

n=1

R∗
n

≤ max
n

qnRsum

(24)

can be used, whereRsum is the sum capacity:

Rsum = max
Q:

PM
n=1

tr(Qn)≤P̄
log

∣

∣

∣

∣

∣

I+

m
∑

n=1

HH
n QnHn

∣

∣

∣

∣

∣

.

However, using the single user water-filling solutionsRsu

is very appealing due to its simplicity.
It remains to find an interior pointR within the relative

interior of the feasible setRf (H, P̄ , γ). Defining

Rǫ = [γ1 + ǫ, ..., γM + ǫ]T

this can be done solving

Pǫ = min P

subj. to Rǫ ∈ C(H, P )
(25)

while choosingǫ such thatPǫ < P̄ . Note that the volume
of the initial ellipse and thus the number of iterations till
convergence of Algorithm 1 depends on the tightness of the
derived bounds onµ∗.
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Fig. 3. Exemplary convergence behavior for a random 2
user example withµ∗ = [0.4 0] (major red x). Dashed
lines represent subgradients.

4.4. Convergence Issues

It can be proven that the sequence of centroidsµ
(n) gener-

ated by Algorithm 1 converges to the optimum Lagrangian
multipliers:

lim
n→∞

µ
(n) = µ

∗. (26)

The proof is standard. See e.g. [19].
Some words have to be said about step 5 of Algorithm

1, which is not specified in detail up to now. It is not clear
from the beginning which QoS constraints will turn out to
be active or not (see e.g. user 3 in Figure 4 and user 2 in
Figure 3). If a QoS constraintγm is not active we conse-
quently getµ∗

m = 0. The dual (12) is defined onµ ∈ RM
+ .

However, the ellipsoid algorithm may generate iteratesµ
(n)

with negative componentsµ(n)
m < 0 such thatg(µ(n)) does

not exist. In this case choose a subgradientν with

νm =

{

−1 if µ
(n)
m < 0

0 otherwise
(27)

and proceed with step 4 of the algorithm. This procedure
is repeated untilµ(n+1) ∈ RM

+ and thus the negative half-
space is ruled out. Note that no evaluation of the dual is
needed while shrinking the ellipse further. However, this
may occur various times since in contrast to pure cutting
plane methods the ellipsoid method adds new parts to the
remaining feasible set (see Figure 3).

4.5. Optimum DPC order

As already studied in [8], thesumof Lagrangian multipliers
µ

∗ and initial weightsq yieldingq̃ as defined in (11) reveals
the optimal Dirty-Paper encoding orderπ(·):

q̃π(1) ≥ ... ≥ q̃π(M). (28)
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Fig. 4. Simulation example for a three user system with
nT = 3, nR = 1, q = [1/3 1/3 1/3]T and QoS parame-
tersγ = [3 2.5 0.5]T .

This is a direct consequence of the polymatroid structure of
the capacity region for a fixed resource allocation. So in
contrast to (4), where the optimal encoding order depends
only on the initial weightsq, the DPC order isnotknown in
advance. This result is similar to [14].

5. SIMULATIONS

In Figure 3 the ellipsoid method is illustrated for a two user
example. It can be seen that the algorithm generates a se-
quence of ellipses with shrinking volume containing the so-
lution. It can be observed that the sequence of centroids
µ

(n) converges toµ∗. The dashed lines represent the sub-
gradientsν(n) determining the half-space to be ruled out.

Figure 4 shows the convergence of Algorithm 1 for a
three user system with an exemplary random channel. The
base station hasnT = 3 antennas while the users ownnR =
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Fig. 5. Rate and weights over transmit SNR for an ex-
emplary three user system withnT = 3, nR = 1, q =
[0.3 0.2 0.5]T and QoS parametersγ = [3 2 1]T .

1 each. The weights are given byq = [1/3 1/3 1/3]T

(thus the objective is throughput) and the QoS constraints
areγ = [3 2.5 0.5]T bps/Hz. The transmit SNR is 10dB.
The upper plot depicts the achieved rates and the lower plot
the corresponding sum of weights and Lagrangian multipli-
ersq + µ. Obviously the QoS constraint of user 3 is not
active resulting inµ∗

3 = 0, while users 1 and 2 achieve their
QoS requirements of 3 and 2.5 bps/Hz having active con-
straintsµ∗

i > 0, i = 1, 2. In Figure 5, the development of
rates andq+ µ over SNR is depicted for an exemplary sys-
tem with random channel realizations,q = [0.3 0.2 0.5]T

and γ = [3 2 1]T . Below a transmit SNR of11.35
dB the problem is infeasible. The Lagrangian multipliers
decrease monotonously with increasing SNR. As the con-
straints become inactive, the corresponding users’ rate starts
to increase. Note that there exist two fractions (users 2,3
and 1,3) within the SNR range wherẽqm = q̃n which cor-



responds to time-sharing among usersm andn.

6. CONCLUSIONS

In this paper, we studied the problem of maximizing a cer-
tain efficiency objective given by a weighted sum of rates
in the MIMO BC while the sum power is limited and QoS
constraints have to be met for a subset of users. This al-
lows a certain tradeoff between efficiency and fairness. We
presented an algorithm based on optimization of the La-
grangian dual which provably converges to the global op-
timum. The question of feasibility was studied and bounds
on the optimum Lagrangian multipliers were derived. These
are necessary for the initialization of the algorithm. The
convergence properties were illustrated and numerical sim-
ulations validated the theoretical analysis.
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