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ABSTRACT

The topic of this work is channel estimation for multi-input

multi-output (MIMO) systems with very coarse signal quan-

tization at the receiver. While coarse quantization of the re-

ceived signal may only have a small to moderate impact on

the channel capacity of MIMO systems, it is, however, neces-

sary for the receiver to know the MIMO channel matrix. This

motivates to study possible ways of estimating the channel,

having available only the receive signals after quantization,

especially fairly coarse ones. Starting from known results, we

develop new insights into the behavior of MIMO channel esti-

mators which work with a single-bit quantizer. Besides ultra-

high-speed radio links, the application area includes on-chip

and inter-chip bus-system, which employ a single-bit quan-

tizer (logic comparator) at the receiving end of the bus.

1. INTRODUCTION

While the discrete-time nature of digital communications is

well understood [1], the challenges which arise from quanti-

zation of the received signal have been largely neglected by

the research community up to now. This situation is starting

to change. Recently, it was demonstrated in [2,3] that quanti-

zation of the received signal only has a small to moderate im-

pact on the channel capacity of MIMO systems, provided that

the receiver, and preferably also the transmitter, have knowl-

edge about the MIMO channel matrix.

Because in general, the channel matrix cannot be assumed

known apriori, a channel estimation has to be performed. In

practice, it is highly desirable that the channel is estimated di-

rectly by the communication device. In this way, the channel

estimator is restricted to use the received signal samples after

quantization (analog to digital conversion).

Some interesting challenges arise when this quantization

becomes rather coarse. This may happen in MIMO systems

that have to operate at high-speed, such that quick-enough,

high-resolution analog to digital converters (ADC) are either

too power-hungry, too expensive, or even not available at all

[4]. This may also happen in high-speed wireline MIMO sys-

tems, such as on-chip or chip-to-chip interconnects, where the

receiver quantizes each wire’s signal with a single-bit quan-

tizer (”high”/”low”). This motivates investigation of channel

estimation with coarse quantization. This problem was first

addressed by [5], where a maximum likelihood (ML) channel

estimation with quantized observation is presented. In gen-

eral, the solution cannot be given in closed form, but requires

an iterative numerical approach, which hampers the analysis

of performance.

In this paper, we would like to help in providing some in-

sight in what happens when channel estimation is performed

for MIMO systems with coarse signal quantization. We focus

on single-bit quantization as an extreme, yet practically inter-

esting, case. We show that in contrast to unquantized estima-

tion, different orthogonal pilot sequences (with same average

total transmit power and same length) yield different perfor-

mances. Especially, it turns out that establishing orthogonal-

ity in the time-domain, i.e. time-multiplexed pilots, can be

preferable to orthogonality in space. By using a pilot that is

multiplexed in time, only one transmit antenna is active at any

time instant. This reduces the problem of a MIMO channel

estimation to a SIMO (single-input multi-output) channel es-

timation. For independent receiver noise, one can reduce the

problem still further to the SISO (single-input single-output)

case, where only a channel coefficient between a pair of re-

ceive and transmit antennas is estimated. A closed-form so-

lution can be found for the ML channel estimation problem,

and the performance analyzed analytically.

2. RELATED WORK

The problem of channel estimation with quantized observa-

tion is also the focus of the work published in [5], which we

briefly review for convenience. A quantized linear channel is

estimated, which input-output relationship is given by:

y = Q(z) , with (1)

z = vec [HX] + ν . (2)

For simplicity, let H ∈ CM×N be the channel matrix of a

frequency-flat MIMO system with N transmit and M receive

ports, let X ∈ C
N×n contain n pilot-vectors of dimension

N , while ν ∈ C(M·n)×1, and z ∈ C(M·n)×1 shall denote

the noise-samples and the unquantized received signal, both

stacked into vectors. After quantization denoted by Q(.), the



observation y ∈ C(M·n)×1 is obtained. The signal from (2)

can also be written as

z = Xh + ν , (3)

where h = vec[H ] and X ∈ C(M·n)×(M·N) contains the pi-

lot symbols placed in the proper places. For zero-mean white

Gaussian noise, the maximum likelihood (ML) estimate for h

based on the unquantized observation z is given by [6],

ĥ′
ML =

(
X

H
X

)
−1

X
Hz . (4)

Since z itself cannot be observed, but only its quantized ver-

sion y, it can be shown [5] that the ML estimate of h is given

as the solution of

ĥML =
(
X

H
X

)
−1

X
H E

[
z | y, ĥML

]
. (5)

This gives a system of non-linear equations which, in general,

cannot be solved in closed form for ĥML. In [5] it is therefore

suggested to perform a fix-point iteration:

À Set ĥML to some initial value

Á Compute w = E
[
z | y, ĥML

]

Â ĥML ←
(
X

H
X

)
−1

X
Hw

Ã Continue at step Á until ĥML has stabilized

3. TEMPORAL VS. SPATIAL PILOT

MULTIPLEXING

For the case of unquantized ML channel estimation (based on

z) the mean square estimation error is given by

ǫ′ = σ2
ν · tr

((
X

H
X

)
−1
)

, (6)

where σ2
ν is the variance of the zero-mean, uncorrelated noise

samples. The best performance is achieved when XX
H is a

scaled identity matrix, which means that the columns of X

are pairwise orthogonal and have the same norm (orthogonal

pilot sequence). If for two pilot matrices X 1 and X 2 holds

that X
H
1 X 1 = X

H
2 X 2, the performance will be the same,

regardless if X 1 6= X 2. This is, in general, not the case

when the channel estimation is performed with the quantized

received signal. To demonstrate this behavior, let us consider

the following channel matrix

H =

[
1 1.1

0.9 −1

]
,

and assume a single-bit quantizer, which merely returns the

sign of the received signal, such that

y = Q(z) =





sign
(
eT
1 z
)

sign
(
eT
2 z
)

...

sign
(
eT
2nz
)




, (7)

where ei is the i-th unit vector, and n is the pilot length, i.e.

the number of two-dimensional pilot vectors which are trans-

mitted during the pilot phase. The sign(.)-function is defined

to return −1 for negative arguments and 1 else. For simplic-

ity, let the elements νi of the noise vector ν be real valued

with the probability density function (pdf):

pdfνi
(νi) =

exp

(
− ν2

i

2σ2
ν

)

√
2πσ2

ν

, (8)

and the property

E[νi · νj ] =

{
σ2

ν for i = j

0 else
, (9)

which makes the noise samples mutually independent. For a

real-valued pilot matrix X , the conditional expectations from

(5) can be written with (8) component wise as:

E[zi|yi = 1, ĥML] =

∫
∞

0

zi e
−

“
zi − e

T

i
X bhML

”
2

2σ2
ν dzi

∫
∞

0

e
−

“
zi − e

T

i
X bhML

”
2

2σ2
ν dzi

, (10)

and

E[zi|yi = −1, ĥML] =

∫ 0

−∞

zi e
−

“
zi − e

T

i
X bhML

”
2

2σ2
ν dzi

∫ 0

−∞

e
−

“
zi − e

T

i
X bhML

”
2

2σ2
ν dzi

,

(11)

which can be computed in closed-form:

E[zi|yi, ĥML] =

eT
i X ĥML + yi

√
2σ2

ν

π
· e

−

“
e
T

i
X bhML

”
2

2σ2
ν

erfc

(
−yie

T
i X ĥML√

2σ2
ν

)
, (12)

where erfc(.) is the complementary error function, and zi and

yi denote the i-th components of the vectors z and y, respec-

tively. The maximum likelihood channel estimate ĥML can



now be obtained by the iterative algorithm from Section 2. In

order to develop more insight into how the pilot influences the

performance of the channel estimation, let us distinguish the

following two cases:

1. Space-multiplexed pilots: Both transmit antennas are

used simultaneously and alternate between the two pi-

lot symbols
√

PT/2 · [1 1]T and
√

PT/2 · [1 − 1]T,

where PT is the total transmit power. The resulting pi-

lot matrix X S is given by:

X S =

√
PT

2





1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1
...

...
...

...




∈ R

(2n)×4 .

Note that X
H
S X S = (nPT/2)I4, where I4 is the 4 × 4

identity matrix. Hence, the pilot is orthogonal.

2. Time-multiplexed pilots: The transmit antennas are

used only one at a time to transmit an all-ones pilot

with transmit power PT:

XT =
√

PT




I4

I4

...



 ∈ R
(2n)×4 .

Since X
H
TXT = (nPT/2)I4, this is also an orthogonal

pilot sequence.

Note that for unquantized channel estimation both pilot se-

quences would yield identical performance. However, this is

not the case for quantized channel estimation. Figure 1 shows

the relative mean square estimation error

ǫrel =

E

[∣∣∣
∣∣∣ĥML − h

∣∣∣
∣∣∣
2

2

]

||h||22
, (13)

which is computed numerically by executing the iterative al-

gorithm described in Section 2, as a function of the ratio of to-

tal transmit power and receiver noise power for three different

pilot lengths n ∈ {103, 3× 103, 104}. For these pilot lengths,

we can make the following key observations from Figure 1:

1. In general, the relative MSE is neither a monotonous,

nor a convex function of log
(
PT/σ2

ν

)
.

2. There is an optimum PT/σ2
ν which yields the lowest

relative MSE. This optimum appears to be almost inde-

pendent of the pilot length, but depends whether time-

or space-multiplexed pilots are used.

3. The time-multiplexed pilots yield a lower relative esti-

mation error than the space-multiplexed pilots.
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Fig. 1. Relative mean square error of the ML estimator with single-

bit quantization, for two different orthogonal pilot sequences and

three different pilot length n. For comparison also the performance

of the unquantized ML estimator is shown (dotted curve).

Since for time-multiplexed pilots only one transmit antenna

is active at any time, the problem is essentially reduced from

the MIMO to the SIMO case. For independent receiver noise,

one can simplify the problem still further to the SISO case,

where only a channel coefficient between a pair of receive and

transmit antennas is estimated. In this case, a closed-form so-

lution can be found for the ML channel estimation problem,

and the performance analyzed analytically. The good perfor-

mance of the time-multiplexed pilot scheme motivates to have

a closer look at the SISO channel estimation, which we will

do in the following.

4. SYSTEM UNDER CONSIDERATION

Let us now restrict the problem to a scalar channel estimation

in a single-input single-output system as shown in Fig. 2. A

binary pilot sequence (x1, x2, . . . , xn), where

xi ∈ {−1, 1}, for i ∈ {1, 2, . . . , n}, (14)

is transmitted with power PT over a communication channel,

which is described by a constant but unknown scalar channel

coefficient

h ∈ R, (15)

and perturbed by additive Gaussian noise νi ∈ R,with prob-

ability density function from (8). Assuming in addition the

property (9), makes the noise samples mutually independent.

The noisy signal is then provided to the input of a single-bit

analog to digital converter, which only delivers the sign of the

received signal. The input-output relationship can therefore



{±1} ∋ xi

√
PT h νi

sign(.)
yi ∈ {±1}

Fig. 2. A scalar single-bit quantized transmission system.

be written:

{−1, 1} ∋ yi = sign (zi) , with (16)

zi = h ·
√

PT · xi + νi . (17)

By observing the sequence (y1, y2, . . . , yn) of detected pilot

bits, an estimation ĥ of the channel coefficient h has to be

obtained. In the following it is assumed that the ratio PT/σ2
ν

is constant and known error-free to the estimator a priori.

5. MAXIMUM LIKELIHOOD ESTIMATION

With the notation of (3), we have

h = h , and (18)

X =
√

PT ·
[

x1 x2 · · · xn

]T
, (19)

and (12) becomes

E[zi|yi, ĥML] =

√
PTxiĥML + yi

√
2σ2

ν

π
· e

−

bh2

ML
PT

2σ2
ν

erfc

(
− xiyiĥML√

2σ2
ν/PT

) . (20)

Since
(
XTX

)
= nPT, we can rewrite (5) as:

ĥML =
1

n
√

PT

n∑

i=1

xi · E[zi|yi, ĥML] . (21)

When we substitute (20) into (21), we find

ĥML = ĥML +

+ (n− ne)

√
2σ2

ν

π
· e

−

bh2

ML
PT

2σ2
ν

erfc

(
− ĥML√

2σ2
ν/PT

) +

− ne

√
2σ2

ν

π
· e

−

bh2

ML
PT

2σ2
ν

erfc

(
ĥML√
2σ2

ν/PT

) , (22)

where ne is the number of observed bit-errors in the detected

pilot, i.e. the number of instances where xiyi =−1. From

(22) then follows that

erfc

(
−ĥML

√
PT

2σ2
ν

)

erfc

(
ĥML

√
PT

2σ2
ν

) =
n

ne
− 1 (23)

must hold. With the help of the equality

erfc(−τ) = 2− erfc(τ) (24)

we finally obtain the maximum likelihood channel estimation:

ĥML(ne) =

√
2σ2

ν

PT
· erfc−1

(
2
ne

n

)
, (25)

where erfc−1(.) is the inverse function of erfc(.), and ne ∈
{1, 2, . . . , n− 1}. Note that if there is no bit-error or all bits

are wrong, we cannot obtain a meaningful channel estimate

besides the sign of h. The maximum likely estimates would

be plus or minus infinity. Hence, we exclude the cases where

ne ∈ {0, n}. In practice this indicates that either the transmit

power is too high or the pilot length is too low. The estima-

tion has then to be restarted with lower transmit power and/or

larger pilot length.

6. PERFORMANCE ANALYSIS

Let us now analyze how accurately the channel is estimated

and which parameters influence the accuracy. A commonly

used measure for accuracy is the mean square error (MSE):

ǫ = Ene

[ (
h− ĥML(ne)

)2

| ne /∈ {0, n}
]

, (26)

where Ene
[.|.] is the conditional expectation with respect to

ne, which is the only random variable of the channel estimator

from (25). The condition ne /∈ {0, n} makes sure, that only

those cases are taken into account where a valid estimate of

the channel exists. However, note that this measure does not

quantify very well the quality of the channel estimation, since

a given value of ǫ may describe a low quality estimate if h is

low in magnitude, and a high quality estimate if h has a large

magnitude. Therefore, it is better to define a relative mean

square error:

ǫrel =
ǫ

h2
(27)

= Ene




(

1− ĥML(ne)

h

)2

| ne /∈ {0, n}



 . (28)

To proceed, note that the bit-error probability is given by:

pb =
1

2
erfc

(
h

√
PT

2σ2
ν

)
. (29)



From (29) and (25) then follows

ĥML(ne)

h
=

erfc−1
(
2
ne

n

)

erfc−1 (2pb)
. (30)

Note that if the observed bit-error ratio ne/n equals the true

bit-error probability pb, the ML estimate is perfect, otherwise

an estimation error occurs. By substituting (30) into (28) we

obtain for the relative mean square error:

ǫrel(pb, ne) = Ene







1−
erfc−1

(
2
ne

n

)

erfc−1 (2pb)





2
∣∣∣∣∣∣∣
ne /∈ {0, n}



 .

(31)

The probability that we observe exactly ne = i bit errors is

given by

Pr[ ne = i ] =

(
n
i

)
pi
b · (1− pb)

n−i
, (32)

since the noise samples, and hence the bit-errors are indepen-

dent. The probability of observing ne = i bit-errors condi-

tioned on ne /∈ {0, n} then becomes

Pr[ ne = i | ne /∈ {0, n} ] =

(
n
i

)
pi
b · (1− pb)

n−i

1− pn
b − (1− pb)n

.

(33)

Note that we have

n−1∑

i=1

Pr[ ne = i | ne /∈ {0, n} ] = 1. (34)

The expectation in (31) can now be written with the help of

(33) in the following explicit form:

ǫrel(pb, n) =

n−1∑

i=1



1−
erfc−1

(
2

i

n

)

erfc−1 (2pb)





2

·
(
n
i

)
· pi

b·(1−pb)
n−i

1−pn
b−(1−pb)n

.

(35)

We see that the relative mean square error is a function of the

pilot length n and the bit-error probability pb.

7. PERFORMANCE OPTIMIZATION AND RESULTS

Obviously, the performance will increase with increasing pi-

lot length n. The situation is more complicated with pb. Too

low values are not good since there will be no or only a few

bit errors such that ne/n will not be a reliable estimate of the

true bit-error probability pb. On the other hand, too large val-

ues of pb will also not be optimum, since ne will not be very

sensitive to the channel coefficient h, as the received signal

would be dominated by noise, jamming the pilot signal. The
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Fig. 3. Relative mean square error ǫrel(pb, n) as a function of the

bit-error probability pb for different pilot lengths n. The star-shaped

markers indicate the position of the respective global minimum of

the relative mean square error.

optimum bit-error probability for a given pilot length is given

in general as:

pb,opt(n) = argmin
pb

ǫrel(pb, n), (36)

which leads to the best achievable relative mean square error:

ǫrel,opt(n) = ǫrel(pb,opt(n), n). (37)

After substituting (35) into (36) it turns out that the optimiza-

tion problem is unfortunately not convex and therefore sev-

eral local minima exist. However, since the optimization has

to be done with respect to one single variable pb, a simple

linear search through the range (0 < pb < 1/2) can be per-

formed efficiently. Figure 3 shows the result of this search of

ǫrel(pb, n) for different values of n. Note that essentially the

same behavior is seen as in the MIMO case example shown

in Figure 1. It is interesting to observe that there is a critical

pilot length ncrit, such that for

¶ n ≤ ncrit: the local minimum of ǫrel(pb, n) with small-

est value of pb is the global minimum, while for

· n > ncrit: the local minimum of ǫrel(pb, n) with the

largest pb is the global minimum.

From careful numerical analysis, we find:

ncrit = 394, (38)

our first ”magic number”. The position of the global mini-

mum switches from the lower local minimum to the higher

local minimum at the critical pilot length. Therefore, between

n = ncrit and n = ncrit + 1 there exists a sudden jump in

pb,opt. This is best seen in Figure 4, which shows the opti-
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Fig. 4. Optimum bit-error probability pb,opt as a function of the

pilot length n.

mum bit-error probability pb,opt that leads to the lowest rel-

ative mean square error for a given pilot length. The curve

is obtained by taking the points marked with the star-shaped

markers from Figure 3 for different values of n. We can see

that for

¶ n > ncrit: the value of pb,opt(n) does not depend much

on the pilot length n anymore. For

· n ≥ 2000: the optimum bit-error probability is virtu-

ally independent of n and has the value:

pb,opt(n) = 5.76× 10−2, for n > 2000, (39)

our second ”magic number”. Notice that, this indepen-

dence of n is also visible in the MIMO case example in

Figure 1. Because the minimum of ǫrel is rather broad

with respect to pb, the same value of 5.76 · 10−2 can

be used as the bit-error probability for all pilot lengths

with n > ncrit = 394, in practice. For

¸ n ≤ ncrit: the value of pb,opt(n) depends strongly on

n and varies within the range

3.17× 10−3 < pb,opt(n) < 0.119, for n ≤ ncrit

(40)

in a non-monotonic way. The largest value applies for

n = 5, while the smallest corresponds to n = ncrit.

The correct setting of pb is also more critical than for

n > ncrit, since the minimum of ǫrel is more narrow.

When we make sure that the transmit power is chosen cor-

rectly, i.e. such that the corresponding pb achieves its opti-

mum value pb,opt for a given pilot length, we obtain the best

achievable relative mean square error ǫref,opt from (37). Fig-

ure 5 shows its dependency on the pilot length. It suggests

10
0

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

n=395 

5/(3n−1)

exp(−7.23⋅(1−(2/n)
0.27

)) 

Pilot length n

B
es

t
ac

h
ie

v
ab

le
re

la
ti

v
e

M
S

E
ǫ r

e
l,
o
p
t

Fig. 5. Best achievable relative mean square error ǫrel,opt(n) as a

function of the pilot length n. The dash-dotted curves show an upper

bound and an approximation.

that ǫref,opt can be bounded from above by:

ǫref,opt(n) ≤ 5

3n− 1
, (41)

for all values of n. For n ≤ ncrit one can approximate by

ǫref,opt(n) ≈ exp

(
−7.23

(
1−

(
2

n

)0.27
))

, (42)

which is fairly accurate for 8 ≤ n ≤ ncrit.

8. UNQUANTIZED CHANNEL ESTIMATION

In order to obtain a better insight into the performance of the

ML channel estimation after single-bit quantization, let us in

the following have a look at what performance by using the

unquantized received signal values

zi = h
√

PTxi + νi (43)

for the channel estimation. The ML estimate is well-known

and given by

ĥ′

ML =
1

n
√

PT

n∑

i=1

zixi. (44)

When we compare (44) to (25), we see that the ML estimator

without quantization does not depend on the variance σ2
ν of

the noise, however the transmit power PT has to be known.

On the other hand, in the case of a single-bit quantization, the

ratio PT/σ2
ν has to be known, which usually means that both

PT and σ2
ν have to be known to the receiver.

Let us now have a look at the performance of the ML es-

timator from (44). By substituting (43) into (44), we obtain

ĥ′

ML = h +
1

n
√

PT

n∑

i=1

νixi. (45)



Since E[ĥ′

ML] = h, the ML estimator (44) is unbiased. Note

that the ML estimator after single-bit quantization from (25)

is however biased, in general.1 This is another difference in

the behavior of the ML estimators that is introduced by the

non-linearity of the single-bit quantization. From (6) and (19)

the estimation error becomes:

ǫ′ =
σ2

ν

nPT
, (46)

while the relative mean square error becomes

ǫ′rel =
ǫ′

h2
=

σ2
ν

nh2PT
. (47)

From (29) we obtain

h2PT

σ2
ν

= 2
(
erfc−1 (2pb)

)2
, (48)

and by substituting into (47) we find that

ǫ′rel(pb, n) =
1

2n
(
erfc−1 (2pb)

)2 . (49)

In contrast to the case of the single-bit quantization (35),

the relative mean square error (49) when using the unquan-

tized signal is strictly decreasing with decreasing pb and ap-

proaching zero from above for pb tending towards zero.

In order to obtain insight into the loss of performance that

comes with the single-bit quantization, let us consider the fol-

lowing situation. A ML channel estimation is performed with

single-bit quantized received signal and the bit-error proba-

bility pb is set to the optimum value according to (36). Let

us compare the performance of this estimation to the perfor-

mance of the estimation with an unquantized signal. From

(39) we know that for n > 2000 the optimum bit-error prob-

ability is given by pb,opt = 5.76× 10−2. By substituting this

value into (49) we obtain

ǫ′rel(5.76× 10−2, n) =
0.403

n
. (50)

By comparison with (41) we see that

ǫrel,opt(n)

ǫ′rel(5.76× 10−2, n)
≈ 4.14, for n > 2000. (51)

This shows that for a large enough pilot length (n > 2000),

we could gain only about a factor 4 in terms of the relative

mean square error, by taking the unquantized received signal

instead of only its sign. Note that, the same effect can be ob-

served for the MIMO case example in Figure 1. This corre-

sponds to a factor of about 2 in terms of the relative root mean

square error, which is a remarkably small loss for a single-bit

quantization.

1One can set the bit-error probability such that the estimate becomes un-

biased. However, for other values of the bit-error probability the estimate is

biased.

9. CONCLUSION

Some insight into the effects of single-bit signal quantization

on MIMO channel estimation is provided. It is demonstrated

that, in contrast to unquantized channel estimation, different

orthogonal pilot sequences (with same average total transmit

power and same length) yield different performances. Espe-

cially, orthogonality in the time-domain (time-multiplexed pi-

lots) can be preferable to orthogonality in space. With orthog-

onal pilots that are multiplexed in time, the problem can be

reduced to the SIMO and finally to the SISO case, where a

closed-form solution can be found for the maximum likeli-

hood channel estimation problem, and the performance ana-

lyzed analytically. By focusing on binary pilot sequences, it

turns out that the performance critically depends on the prob-

ability that a pilot symbol is detected wrongly. The optimum

probability depends on the length of the pilot, however, for

large pilots (2000 or more symbols), this optimum probability

converges to about 5%. The lowest achievable mean square

error turns out to be roughly only four times larger than the

mean square error obtained from the unquantized signal at the

same transmit power.
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