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ABSTRACT this paper, we introduce a more general tensor—based chan-
nel model, which truly captures the nature of MIMO chan-
nels. The generalized Higher Order Singular Value Decom-
position

(HOSVD) [4] gives us the possibility to analyze the eigen-
structure of the channel along more dimensions, i.e., along
space and frequency.

In this contribution we present a new analytical channel
model for frequency selective, time variant MIMO systems.
The model is based on a correlation tensor, which allows a
natural description of multi-dimensional signals. By appl
ing the Higher Order Singular Value Decomposition (HO-

SVD), we gain a better insight into the multi-dimensional The paper is organized as follows: Section 2 gives a

_elgenstructure Of. t_he channel. Applications of the mOdeI.brief introduction of the relevant tensor algebra, which is
include the denoising of measured channels and the possi-

bility to aenerate new svnthetic channels disolaving amive needed to understand the proposed model. Section 3 intro-
y 10 generat y playing aig duces the tensor-based channel model and its applications.
correlation in time, frequency, and space. The proposed

model possesses advantages over existing 2—dimensienal e!\/loreover, this section shows the applicability and_va}qdlt
of the model on channel measurements. In Section 4 the
genmode—based channel model§. In contrast to th_em, th%onclusions are drawn.
tensor-based model can cope with frequency and time se-
lectivity in a natural way.
2. BASIC TENSOR CALCULUS
1. INTRODUCTION 2 1. Notation
Multiple Input Multiple Output (MIMO) schemes offer the  To facilitate the distinction between scalars, vectorgrima
chance to fulfill the challenging requirements for futureleo  ces and higher—order tensors, we use the following notation
munication systems, as higher data rates can be achievedcalars are denoted by lower—case italic letters, ...),
by exploiting the spatial dimension. To investigate, desig vectors by boldface lower—case italic lettées b, ...), ma-
and test new techniques, it is crucial to use realistic cebnn trices by boldface upper—case letté4, B, ...), and ten-
models. sors are denoted as upper—case, boldface, calligraphic let

We propose a tensor—based analytical channel model ters(.A, B, ...). This notation is consistently used for lower—
which, in contrast to traditional models, can cope with non— order parts of a given structure. For example, the entry with
stationary time and frequency selective channels. The lat-row index: and column indey in a matrix A is symbol-
ter are particularly relevant for wireless communications ized bya, ;. Furthermore, thé-th column vector ofA is
We represent the frequency selective, time variant MIMO denoted ag;. As indices, mainly the letters j, k, andn
channel as a 4—dimensional tenggre CMrxMzxNexNe are used. The upper bounds for these indices are given by
whereMy and Mt are the number of antennas at the trans- the upper—case lettefs .J, K, and N, unless stated other-
mitter and receiver, whered$; and N; are the number of  wise.
samples taken in frequency and time, respectively.

To visualize the spatial structure of the channel, eigen-
mode—based models have been introduced, such as [1, 2
However, these models use a 2—dimensional correlation main the (2—dimensional) matrix case we distinguish between
trix which considers one dimension only. Alternatively,@y  row vectors and column vectors. As a generalization of this
cumbersome stacking of the channel coefficients, as in [2],idea, we build thex=—mode vectorda} of an N—th order
it is possible to consider more dimensions. Moreover, by tensor. A € C/*/2xxIN py varying the index,, of the
following this approach, it is not possible to investigdte t  elements{a;, .. ;......y} While keeping the other indices
eigenmodes of different dimensions separately, whereas th fixed. In Figure 1, this is shown for a 3—dimensional ten-
proposed tensor—based channel model allows this. sor. Please note that in general there(die Io--- 1,1 -

In [3], a tensor-based channel model was introduced.I,, - - - In) such vectors. In the 2—dimenional case the col-
The latter is however a tensor extension of [1], and theeefor umn vectors are equal to the 1-mode vectors, and the row
assumes a Kronecker like structure of the eigenmodes. Invectors are equal to the 2-mode vectors. mhth unfold-

]2.2. n—mode vectors and tensor unfoldings



2.3.2. The outer product

We now define the outer product between 2 tensors. Assume
an N—th order tensord and aK—th order tensoB3. Then,

the outer product, denoted &3l o B), is a(N + K)-th
dimensional tensor whose entries are given by

(Ao B) -b
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Fig. 1. Mode 1, 2, and 3 vectors of a 3—dimensional tensor. for all possible values of the indices. Therefore, the outer
product creates a tensor with all combinations of possible

_ ) _ ) pairwise element—products.
ing matrix A, € Cln*(hlzTuslnir-In) is the matrix

consisting of allh—mode vectors. In [4], the ordering of the
n—mode vectors was defined in a cyclic way. In contrast to
the definition in [4] we define the—th unfolding matrixas  Then—mode inner product is denoted.ds= B e,, C. The
follows: resulting tensord has ordetN + K — 2, whereN and K
are the orders oB € CHixxIn andC € C/rx>/n,
Apy = {ajx} € Cx (il In) respectively. It is related to the outer product and implies
. an additional summation over the-th dimension of both
with j = i, and tensors. Therefore, we define themode inner product as

2.3.3. Theax—mode inner product

I

-1
k=1+ Y (-1 [[ L. A= "Bi—10Cji, 4)

I=1,l#n q=1,q#n =1

This definition assures that the indices of themode vec-  whereB;, _, is the(N — 1)-th dimensional subtensor &

n

tors vary faster in the following ascending order which we obtain when we set the index along the dimension
n equal tol. The tensolC;,—, is defined in an analogous
11,92,y b1, bnt2y« -+, IN - (1) way. Please note that the tenst#sandC must be of same

size along thex—th dimension, and therefoig = J,,.
This ordering becomes patrticularly important for our later

derivations, especially for equation (23). Please noté tha

this unfolding definition is also consistent with tReATLAB®

command eshape. Therefore, we will refer to this un-  The vec(-) operator stacks all elements of a tensor into a

folding as the MATLAB-like unfolding. vector. Thereby the indices of an N—dimensional tensor
A vary in the following ascending order

2.3.4. Thevec(-) operator for tensors

2.3. Tensor operations . . .
21,225+« yIN—1,IN -

2.3.1. Ther-mode product Please note that the unfolding definition in Section 2.2 en-
To perform a generalized Higher Order Singular Value De- sures that theec(-) operation for anV—dimensional tensor
composition (HOSVD), it is necessary to transformthe  is equal to the transpose of itd + 1)-th unfolding
mode vector space of a tensor. This can be done with the
n—mode product between a tensor and a matrix. Let us as- vec(A) = A[TN+1] . (5)
sume a tenso = {ai, i, iy} € Cl1*12X%IN gnd a
matrix U € C/»*/». Then then—mode product, denoted 2.4, Higher Order Singular Value Decomposition
by Ax,U,isa(lyxIox---xIn_1XJyXIpy1 X -X1Iy)
tensor, whose entries are given by Every N—th order complex tensed € C1>12xxIn can

be decomposed into the form

Ax,U). . . o —

E )7/1;712;---77171,71;.771;7171+17~~~;71N A=38x, U(l) X U(2) XN U(N) ’ (6)

o 2)
Z Qiy i, yin—1yinsint1-in Wi in s in which the matrices of the—mode singular vectolg (") =
=t u§">,u§">, . .,uf,:)} € C»*In are unitary, and the core

for all possible values of the indices. With the help of the tensorS ¢ Clix2xXIn jg g tensor of the same the size
unfolding definition from above we can write the-mode  as.4. The basis matrice/(™ contain the left singular

product also in terms of matrix operations. Then, theh vectorSugn), ugn)’ . ,uﬁ”) of the matrix unfoldingsA,,,;.
unfolding of the resulting tensd8 can be calculated as The core tensa$ can be calculated with the equation

By =U - Apj - 3) S=Ax, UV 5, U®" ... xyU™M" .
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Fig. 2. Definition of the channel tensor. The 2—dimensional HL&J T
. . Tw Ny w
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H(t1) are depicted. 1 !

where(-)H denotes the Hermitian transpose. The core ten- Fig. 3. Definition of the non-overlapping stationarity win-
sor fulfills some special properties, especially the progper dows. Each window ha&yw time samples. In the other
of all orthogonality, which means that the rows of all un- dimensions, each window is of same size+as

folding matricesS|,,; are orthogonal, c.f. [4]. With the help

of the Kronecker product it is possible to write equation (6)

in terms of matrix operations. Where_o4 den_otes_ thel—m_od_e inner prqduct. Please_note
thatn is the time index within thé&—th window. To get in-
Apy = U™ . S sight into the spatial structure of the channel, we decompos
T this correlation tensor via the following HOSVD
(U(N) @ - U U g... U(l)) . (8

Ry = Spx 1U,§1) ><2U,§2) ><3U,53) ><4U,54) ><5U,§5) ><6U,§6).

Please note that this formulais only valid for the MATLAB— (13)

like unfolding defined in Section 2.2.

The matricesU,g") contain the left singular vectors of the
3. TENSOR CHANNEL MODEL n—th unfolding matrice$ Ry ), of Rx. The symmetries

of the correlation tensor are also reflected by its HOSVD.

As already mentioned, we represent the channel CoeﬁiCie”tsrherefore, we can choose a HOSVD such that the following
in form of the tensor equations hold

H e C]\'IRX]\'ITXNfXNt , (9)
v — W’
whereMy andM+ are the number of antennas at the trans- k k )
mitter and receiver, andy; and V; are the number of sam- U,iQ) = U,§5) , (14)
ples taken in frequency and time, respectively. Please note U]g?’) _ U,§6)*

that the frequency domain of the channel is connected to its
delay timer via a Fourier Transform.

R ) In this case, equation (13) can be simplified to
Similarly to [3, 5], we now define the channel correla-

tion tensor as Ry =8k x4 U,gl) X UIEQ) X3 UIEB)

R = E{H(t) OH(t)*} c (CMRXMTXNfX]WRXZWTXNf , « U(l)* « U(Q)* « U(3)* (15)

(10) 1 Uy, 5 Uy e Uy’
whereH(t) € CMrxMrxNt js the frequency selective and the core tensa$;,, according to Section 2.4, can be
MIMO channel at time snapshat calculated via
Assuming that the channel is block—wise stationary in

time, we define an averaging window of siZg;, so that S, = Ry x4 U}EUH X5 UéQ)H X3 U}g?’)H
the channel within thé—th window, denoted witfH;,, can " " )7 (16)
be assumed stationary (see Figure 3). The over—all channel Xa U x5 U™ xg U™

matrix H is then defined as o )
The proposed channel model consists in computing the

H = [Hl CaHy s s H N | (11) correlation tensor® ;, for all windows, i.e. ¥k = 1... L%V—vaj,
w as they describe exhaustively the correlation properties o
where _ 4 denotes the concatenation of the tenskfs the channel, seen as a temporal block stationary stochastic
along the 4—th dimension, as introduced in [5]. We com- process.

pute an estimate of thie-th correlation tensor by averaging In the following we give a brief description of two appli-
in time, as cations of the proposed channel model, namely the genera-
Tw tion of new channel realizations and the subspace—based de-
Ri~Ry = 1 Z (Hi), _ o (Hi)! _ noising of a channel measurement. Then we apply the cor-
Tw — e e (12) relation tensor—based channel model to channel measure-
1 ments, and compare its performance with the tensor-based

=T “Hy 0s M, channel model presented in [3].



3.1. Channel Synthesis

In the 2—dimensional case [1, 2], the joint spatial correfat
matrix is defined as

Ry, = E{vec(Hy) - vec(H)"} . (17)

Similarly to (12), we can compute an estimatel®f, de-
noted byR;, with

Tw

= Lw Z vec ((H);,—,,) - vec ((’H;C)M:n)H . (18)

From the information given in the correlation mathQ it

is possible to construct a new random synthetic chakf)gl
displaying the same spatio—frequency correlatiofHast)

via

vec (’ﬁk) =X5-g, (19)

where the entries of the vectgrare i.i.d. zero mean com-
plex Gaussian random numbers with unit variance, and

X, =R; . (20)

Hereunvecyy s ((Sk)[Tﬂ denotes the inverse matrixc(-)
operation applied to the 7—th unfolding of the core tensor
Si. Thereforeunvecryr ((Sk)[Tﬂ) is a square matrix of

same size af?, with I = MwrMrtNy. The correlation
nJatrika can be calculated from the HOSVD of the tensor
R via

Ry, = U - unvecyy; ((Sk)[Tﬂ) Ug (25)

Please note thatnvecyy ((Sk)[Tﬂ) is not a diagonal ma-

trix. Therefore, we have to perform an additional SVD for
the calculation ofX, as follows

unvecCyxr ((Sk)g]) = Vk . Sk . VkH .
Now the matrixX;, can be calculated as
~ 1
X, = (0P 0UuP 2U) Vi 5. (26)

Especially in cases, whed,, is of low rank it is compu-

The matrixX, is computed via a 2—dimensional eigenvalue tationally cheaper to calculati), directly from R using

decomposition of
R, =U -3, U}, (21)

where the matriXJ;, contains all eigenvectors d®, and

3 is the diagonal matrix containing the eigenvalues. Then

we defineX;, as follows

RP-U 3t =X,. (22)

equation (26).

3.2. Denoising a Measured Channel

In order to reduce the noise in measured channels, we ex-
tend an idea proposed in [2] to the correlation tensor—based
channel model. For every windoky as defined above, we
construct a tensaE (t), calculated for every time snapshot

t, using the following equation

By computing the matrixX;, we can generate new random

synthetic channels by means of equation (19). In the follow-

ing we show that it is also possible to compute the matrix

X, from the HOSVD of the correlation tens® .. where the matriceéf,gn) are computed from the correlation
With the help of the MATLAB-like unfolding from Sec-  tensorR;, given in (12). With the help of the tens@y, (t),

tion 2, the connection between the estimated 2D correlationthe channel can be reconstructed exactly via the synthesis

matrix R, and the estimated correlation tengRy, is given equation

by
Hi(t)
. L \T L \T .
vec (Rk) = (Rk) = (Rk) = vec (Rk) . (23)
(3] (7] Denoising the measurement ten®o (¢) is possible by sim—

To compute the matri¥X;,, we can either compute a SVD ply considering only the first,, singular vectors oU

of Ry, or apply a HOSVD orR;,. This relation between  corresponding to thé,, largest singular values d&j,. L

the 2—dimensional model and the correlation tensor-basedhould be determined with the help of the singular value
model follows from the following derivation. For the reason spectra of the HOSVD. This is similar to the well known
of simplicity we first define the following unitary matrix: low—rank approximation of a matrix via the 2D SVD. Thereby,
we assume that the omitted singular vectors span the noise
space. Thus, we obtain the tens®f () € CF*L2xLs and

Zi(t) = Ho(t) <, UD s, UP" s, U (27)

= Z,(t) <, U 5 U xsUP . (28)

Us =0 oU? o UV . (24)

With the Kronecker version of the HOSVD (8) it follows
from the latter relation

vec (Rk) = vec ('ﬁ,k) = ('ﬁ,k);
= (v e up) (s}

= vec<U,$ - UnveCsx g ((Sk)[q;]) . U,‘;H> .

(Hk)denoised (t) :Z;(t) X1 (Ulgl))[Lll
X (U;EQ))M X3 (U]g3))[L3] |

where (U . indicates the matrix containing the first

L,, singular vectors along the-th dimension and for the
k-th window.

(29)

m\ £
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Fig. 5. Reconstruction error for two synthetic noisy chan-

nels: a rich multi-path chann@t,; a 2—path channét(,.

The tensor-based denoising outperforms the 2D approaclFig. 7. Synthetic ImProp scenario characterized by 2 paths
for richer channels. The green curve represents the enror fo (H,)

the noisy channels.

. _ ~ channels.
Figure 5 shows the reconstruction error for two noisy

§ynthet|c channels, nameli; andH,, and two denois- 3.3 Validation on Measurements
ing approaches. The channels are created with the IImProp;
a flexible geometry based channel model capable of gen-Next, we apply the proposed correlation tensor—based model
erating frequency selective time variant multi—user MIMO on measurements gathered from the main train station in
channels displaying realistic correlation in frequeniryg Munich, Germany. The multi-dimensional RUSK MIMO
space, and between users, cf. [6]. The Figures 7 and 6 showthannel sounder employedl& x 8 antenna architecture
the geometries of the synthetic channels. The first chan-with a 16—element uniform circular array (UCA) at the trans-
nel’H,, is richer in multi-path components than the second mitter and an 8—element uniform linear array (ULA) at the
"H». The reconstruction error (power) is defined as the Eu- receiver. The antenna spacing at both arrays was ab@ut
clidian distance between the noiseless channel and the reThe bandwidth was 120 MHz at a carrier frequency of 5.2

constructed (denoised) channel GHz. The frequency spacing was 3.125 kHz which yields a
NeMe M total of 385 frequency bins. The receiver measured a com-
N 2 lete channel response every 18.432 ms. A total of 9104

Cr = Z }VGC (Hsynthctic)n — vec (Hdcnoiscd)n| ) P P Y ) ’

time snapshots were taken. The mobile terminal was mov-
(30) ing in a Non Line-Of-Sight (NLOS) regime. The environ-
for z = {matrix, tensor}, as also depicted Figure 4. In Fig- ment was particularly rich in multi-path components.
ure 5, the thick lines represent the error obtained via the pr For the calculation of the channel model we consider
posed tensor-based method. The thin lines show the reconenly 25 adjacent frequency bins around the center frequency
struction error achieved by applying a low-rank approxi- thus spanning a bandwidth of 7.5 MHz. We divide the chan-
mation directly onk2. We can observe that the tensor-based nel into windows ofly = 25 samples in the time domain,
approach leads to a better subspace estimate, because of tlaes in Figure 3.
additional singular vectors in the frequency directionisTh We first consider 10 adjacent time windows of the mea-
translates to a lower reconstruction error. The gain with re sured channel. To assess the behavior of the channel in
spect to the 2D approach becomes more relevant for richeithe frequency domain, we compare the proposed correla-

n=1



tion tensor—based channel model with the model presentedealizations we calculate the parameters for both models an

in [3] by means of the ergodic capacity compare the modeled capacities@@gas. The capacity
of the proposed model is denoted 6y g, as for Corre-
C—F {log2 [det <IMR T LHj’.t 'H?t)] } . lation Tepsor—Based (CTB), whereas the strqcturgd model
My 7 . from [3] is denoted byC,uc¢. The results are given in Fig-

) ) ) ure 10. Theoretically, the reference capacityg s and the
Numerically, the equation above is computed for SUbba”dScapacity obtained from the proposed mo€gl...; must be

of 5 frequency samples each and by averaging in time andg 5 as they are calculated with the same channel model.
frequency in every window, so that

As we take a finite number of samples, the two capacities
11 P still differ slightly, i.e., theCy,.c4 are not on the diagonal.
C=—— Z log, [det (IMR +—Hg;,- H?t)} , Also in this case, the proposed channel model shows a better
Flw Mr performance than thetructured model
) From the results shown in Figures 8 and 10, we can see
whereF" =5, andTw = 25. For the observed 10 windows,  that the proposed method achieves a higher accuracy, al-
we obtain a total 06 - 10 = 50 capacity estimates. though the gap in capacity to the structured model is not
From each window, using all 25 frequency bins, we com- |5rge. As these figures refer to particular time snapshas of
pute the correlation tensor as in equation (12) and the pa-specific channel measurement, we now investigate how the
rameters for the model proposed in [3], which we refer to herformances change with different propagation condition
as thestructured model Please note that we do not com- Tq do so, we divide once more the measurement teh&or
pare our model with existing 2—dimensional ones (such asjnto windows of25 time and frequency samples. Then, for
Kronecker [7] or Weichselberger [1]), because they are notgach window, we compute the distance between the corre-
suitable for modeling the channel in the frequency dimen- |ation tensorsR cri (correlation tensor—based model) and

sion. With the tensor—based models we generate new chang . (structured modg) by means of a straightforward
nel tensors with exactly the same sizes as the measured on@ytension of the metric proposed in [8]. It is defined as

We then compute the capacities in the way just mentioned

and we plot the results in Figure 8 poq_ _ (vec(Rere), vee (Rstruct)) (31)

[vec (RcrB) |IF - [[vee (Rstruct) |7

20 w . T w : w where (-, -) denotes the scalar product, afid ||r is the
# Capacity, correlation tensor based model (CTB) . . .
195!| + Capacity, Kronecker like structure (struct) [3] 1 Frobenius norm. The latter rangesin the intefvall], and
becomes larger, the more the signal spaces of the two cor-
o relation tensors overlap. The metric becomes zero for non—
N . . . .
< 155 overlapping, orthogonal signal subspaces. Figure 11 tiepic
2 the results of this comparison (top plot) and the power of the
% 18y channel (bottom one). Simulations show that for lower val-
2175 ues of the metric, the structured model performs worse, as
§ ol it is incapable of mimicking the full statistics of the chan-
2 nel. We can observe that there is a correlation between the
I power of the channel and the metiit; and thus, between
16l the power and the performance of the model proposed in [3].
This can be interpreted as follows. For smaller powers, the
516 165 17 175 18 185 19 195 20 channel is richer in multi-path, and the eigenstructurdef t

Measured capacity [Bits/s/Hz] correlation tensor can be better represented by a Kronecker

like structure.

Fig. 8. Capacity comparison between the proposed model  The validity of this observation needs to be investigated

and the structured model [3]. The closer the points are tofurther with the help of additional channel measurements.

the diagonal, the more precisely the modeled capacity fitsIn particular, the capacity might not be the best metric to

the capacity of the channel. compare these models, as it is computed independently for
each frequency bin, and therefore, does not account for any

We can see that the proposed correlation tensor—base@gorrelation along this dimension.

model performs better than tiseructured modelSince the The portion of the channel used for the capacity com-

estimate of the ergodic capacity is computed from very few parison from the Figures 8 and 10 are highlighted in Figure

samples, its variance is presumably large. To avoid this11. In the time windows for which the metri@ is high,

problem and eliminate any influence of the estimation er- both models show the same performance with respect to the

rors on the performance of the two models, we follow the capacity.

processing scheme depicted in Figure 9. From one mea-

surement window we compute a reference correlation tensor 4. CONCLUSIONS

R.er and from it, using equation (19), we generate 30000

new channel realizations. The latter are used to compute theAe present a novel correlation tensor—based channel

capacityCyigas Which we take as reference. From the new model which is applicable for frequency selective, tima-var
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Fig. 11 Distance of the correlation tensors (after Herdin)
for the Kronecker like model after [3] and the correlation

Model capacity [Bits/s/Hz]
»
(o]

18.4F tensor—based model. The lower part of the picture draws
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