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ABSTRACT

In this contribution we present a new analytical channel
model for frequency selective, time variant MIMO systems.
The model is based on a correlation tensor, which allows a
natural description of multi–dimensional signals. By apply-
ing the Higher Order Singular Value Decomposition (HO-
SVD), we gain a better insight into the multi–dimensional
eigenstructure of the channel. Applications of the model
include the denoising of measured channels and the possi-
bility to generate new synthetic channels displaying a given
correlation in time, frequency, and space. The proposed
model possesses advantages over existing 2–dimensional ei-
genmode–based channel models. In contrast to them, the
tensor–based model can cope with frequency and time se-
lectivity in a natural way.

1. INTRODUCTION

Multiple Input Multiple Output (MIMO) schemes offer the
chance to fulfill the challenging requirements for future com-
munication systems, as higher data rates can be achieved
by exploiting the spatial dimension. To investigate, design,
and test new techniques, it is crucial to use realistic channel
models.

We propose a tensor–based analytical channel model
which, in contrast to traditional models, can cope with non–
stationary time and frequency selective channels. The lat-
ter are particularly relevant for wireless communications.
We represent the frequency selective, time variant MIMO
channel as a 4–dimensional tensorH ∈ CMR×MT×Nf×Nt ,
whereMR andMT are the number of antennas at the trans-
mitter and receiver, whereasNf andNt are the number of
samples taken in frequency and time, respectively.

To visualize the spatial structure of the channel, eigen-
mode–based models have been introduced, such as [1, 2].
However, these models use a 2–dimensional correlation ma-
trix which considers one dimension only. Alternatively, bya
cumbersome stacking of the channel coefficients, as in [2],
it is possible to consider more dimensions. Moreover, by
following this approach, it is not possible to investigate the
eigenmodes of different dimensions separately, whereas the
proposed tensor–based channel model allows this.

In [3], a tensor–based channel model was introduced.
The latter is however a tensor extension of [1], and therefore
assumes a Kronecker like structure of the eigenmodes. In

this paper, we introduce a more general tensor–based chan-
nel model, which truly captures the nature of MIMO chan-
nels. The generalized Higher Order Singular Value Decom-
position
(HOSVD) [4] gives us the possibility to analyze the eigen-
structure of the channel along more dimensions, i.e., along
space and frequency.

The paper is organized as follows: Section 2 gives a
brief introduction of the relevant tensor algebra, which is
needed to understand the proposed model. Section 3 intro-
duces the tensor–based channel model and its applications.
Moreover, this section shows the applicability and validity
of the model on channel measurements. In Section 4 the
conclusions are drawn.

2. BASIC TENSOR CALCULUS

2.1. Notation

To facilitate the distinction between scalars, vectors, matri-
ces and higher–order tensors, we use the following notation:
scalars are denoted by lower–case italic letters(a, b, ...),
vectors by boldface lower–case italic letters(a, b, ...), ma-
trices by boldface upper–case letters(A, B, ...), and ten-
sors are denoted as upper–case, boldface, calligraphic let-
ters(A, B, ...). This notation is consistently used for lower–
order parts of a given structure. For example, the entry with
row indexi and column indexj in a matrixA is symbol-
ized byai,j . Furthermore, thei–th column vector ofA is
denoted asai. As indices, mainly the lettersi, j, k, andn
are used. The upper bounds for these indices are given by
the upper–case lettersI, J , K, andN , unless stated other-
wise.

2.2. n–mode vectors and tensor unfoldings

In the (2–dimensional) matrix case we distinguish between
row vectors and column vectors. As a generalization of this
idea, we build then–mode vectors{a} of an N–th order
tensorA ∈ CI1×I2×···×IN by varying the indexin of the
elements{ai1,...,in,...,iN

} while keeping the other indices
fixed. In Figure 1, this is shown for a 3–dimensional ten-
sor. Please note that in general there are(I1 · I2 · · · In−1 ·
In+1 · · · IN ) such vectors. In the 2–dimenional case the col-
umn vectors are equal to the 1–mode vectors, and the row
vectors are equal to the 2–mode vectors. Then–th unfold-
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Fig. 1. Mode 1, 2, and 3 vectors of a 3–dimensional tensor.

ing matrixA(n) ∈ CIn×(I1I2···In−1In+1···IN ) is the matrix
consisting of alln–mode vectors. In [4], the ordering of the
n–mode vectors was defined in a cyclic way. In contrast to
the definition in [4] we define then–th unfolding matrix as
follows:

A[n] = {aj,k} ∈ C
In×(I1I2···In−1In+1In+2···IN ) ,

with j = in and

k = 1 +

N
∑

l=1,l 6=n

(iL − 1) ·

l−1
∏

q=1,q 6=n

Iq .

This definition assures that the indices of then–mode vec-
tors vary faster in the following ascending order

i1, i2, . . . , in−1, in+2, . . . , iN . (1)

This ordering becomes particularly important for our later
derivations, especially for equation (23). Please note that
this unfolding definition is also consistent with theMATLABr

commandreshape. Therefore, we will refer to this un-
folding as the MATLAB–like unfolding.

2.3. Tensor operations

2.3.1. Then–mode product

To perform a generalized Higher Order Singular Value De-
composition (HOSVD), it is necessary to transform then–
mode vector space of a tensor. This can be done with the
n–mode product between a tensor and a matrix. Let us as-
sume a tensorA = {ai1,i2,...,iN

} ∈ C
I1×I2×···×IN and a

matrix U ∈ CJn×In . Then then–mode product, denoted
byA×nU , is a(I1×I2×· · ·×In−1×Jn×In+1×· · ·×IN )
tensor, whose entries are given by

(A ×n U)i1,i2,...,in−1,jn,in+1,...,iN
=

In
∑

in=1

ai1,i2,...,in−1,in,in+1...,iN
· ujn,in

,
(2)

for all possible values of the indices. With the help of the
unfolding definition from above we can write then–mode
product also in terms of matrix operations. Then, then–th
unfolding of the resulting tensorB can be calculated as

B[n] = U · A[n] . (3)

2.3.2. The outer product

We now define the outer product between 2 tensors. Assume
anN–th order tensorA and aK–th order tensorB. Then,
the outer product, denoted as(A ◦ B), is a (N + K)–th
dimensional tensor whose entries are given by

(A ◦ B)i1,i2,...,iN ,j1,j2,...,jK
= ai1,i2,...,iN

· bj1,j2,...,jK
,

for all possible values of the indices. Therefore, the outer
product creates a tensor with all combinations of possible
pairwise element–products.

2.3.3. Then–mode inner product

Then–mode inner product is denoted asA = B •n C. The
resulting tensorA has orderN + K − 2, whereN andK
are the orders ofB ∈ CI1×···×IN and C ∈ CJ1×···×JN ,
respectively. It is related to the outer product and implies
an additional summation over then–th dimension of both
tensors. Therefore, we define then–mode inner product as

A =

In
∑

l=1

Bin=l ◦ Cjn=l , (4)

whereBin=l is the(N − 1)–th dimensional subtensor ofB

which we obtain when we set the index along the dimension
n equal tol. The tensorCjn=l is defined in an analogous
way. Please note that the tensorsB andC must be of same
size along then–th dimension, and thereforeIn = Jn.

2.3.4. Thevec(·) operator for tensors

The vec(·) operator stacks all elements of a tensor into a
vector. Thereby the indicesin of anN–dimensional tensor
A vary in the following ascending order

i1, i2, . . . , iN−1, iN .

Please note that the unfolding definition in Section 2.2 en-
sures that thevec(·) operation for anN–dimensional tensor
is equal to the transpose of its(N + 1)–th unfolding

vec(A) = A
T
[N+1] . (5)

2.4. Higher Order Singular Value Decomposition

EveryN–th order complex tensorA ∈ CI1×I2×···×IN can
be decomposed into the form

A = S ×1 U (1) ×2 U (2) · · · ×N U (N) , (6)

in which the matrices of then–mode singular vectorsU (n) =
[

u
(n)
1 , u

(n)
2 , . . . , u

(n)
In

]

∈ CIn×In are unitary, and the core

tensorS ∈ CI1×I2×···×IN is a tensor of the same the size
as A. The basis matricesU (n) contain the left singular
vectorsu(n)

1 , u
(n)
2 , . . . , u

(n)
In

of the matrix unfoldingsA[n].
The core tensorS can be calculated with the equation

S = A ×1 U (1)H ×2 U (2)H · · · ×N U (N)H , (7)
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Fig. 2. Definition of the channel tensor. The 2–dimensional
subtensorH(f0, t0), and the 3–dimensional subtensor
H(t1) are depicted.

where(·)H denotes the Hermitian transpose. The core ten-
sor fulfills some special properties, especially the property
of all orthogonality, which means that the rows of all un-
folding matricesS[n] are orthogonal, c.f. [4]. With the help
of the Kronecker product it is possible to write equation (6)
in terms of matrix operations.

A[n] = U (n) · S [n]·
(

U (N) ⊗ · · · ⊗ U (n+1) ⊗ U (n−1) ⊗ · · · ⊗ U (1)
)T

. (8)

Please note that this formula is only valid for the MATLAB–
like unfolding defined in Section 2.2.

3. TENSOR CHANNEL MODEL

As already mentioned, we represent the channel coefficients
in form of the tensor

H ∈ C
MR×MT×Nf×Nt , (9)

whereMR andMT are the number of antennas at the trans-
mitter and receiver, andNf andNt are the number of sam-
ples taken in frequency and time, respectively. Please note
that the frequency domain of the channel is connected to its
delay timeτ via a Fourier Transform.

Similarly to [3, 5], we now define the channel correla-
tion tensor as

R = E{H(t) ◦ H(t)∗} ∈ C
MR×MT×Nf×MR×MT×Nf ,

(10)
whereH(t) ∈ CMR×MT×Nf is the frequency selective
MIMO channel at time snapshott.

Assuming that the channel is block–wise stationary in
time, we define an averaging window of sizeTW, so that
the channel within thek–th window, denoted withHk, can
be assumed stationary (see Figure 3). The over–all channel
matrixH is then defined as

H =

[

H1 4 H1 4 · · · 4 H
⌊

Nt

TW
⌋

]

, (11)

where 4 denotes the concatenation of the tensorsHk

along the 4–th dimension, as introduced in [5]. We com-
pute an estimate of thek–th correlation tensor by averaging
in time, as

Rk ≈ R̂k =
1

TW
·

TW
∑

n=1

(Hk)i4=n ◦ (Hk)
∗
i4=n

=
1

TW
· Hk •4 H

∗
k ,

(12)
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Fig. 3. Definition of the non-overlapping stationarity win-
dows. Each window hasTW time samples. In the other
dimensions, each window is of same size asH.

where•4 denotes the4–mode inner product. Please note
thatn is the time index within thek–th window. To get in-
sight into the spatial structure of the channel, we decompose
this correlation tensor via the following HOSVD

R̂k = Sk×1U
(1)
k ×2U

(2)
k ×3U

(3)
k ×4U

(4)
k ×5U

(5)
k ×6U

(6)
k .
(13)

The matricesU (n)
k contain the left singular vectors of the

n–th unfolding matrices(R̂k)[n] of R̂k. The symmetries
of the correlation tensor are also reflected by its HOSVD.
Therefore, we can choose a HOSVD such that the following
equations hold

U
(1)
k = U

(4)∗

k ,

U
(2)
k = U

(5)∗

k ,

U
(3)
k = U

(6)∗

k .

(14)

In this case, equation (13) can be simplified to

R̂k = Sk ×1 U
(1)
k ×2 U

(2)
k ×3 U

(3)
k

×4 U
(1)∗

k ×5 U
(2)∗

k ×6 U
(3)∗

k ,
(15)

and the core tensorSk, according to Section 2.4, can be
calculated via

Sk = R̂k ×1 U
(1)H

k ×2 U
(2)H

k ×3 U
(3)H

k

×4 U
(1)T

k ×5 U
(2)T

k ×6 U
(3)T

k .
(16)

The proposed channel model consists in computing the
correlation tensorŝRk for all windows, i.e.,∀k = 1 . . . ⌊ Nt

TW
⌋,

as they describe exhaustively the correlation properties of
the channel, seen as a temporal block stationary stochastic
process.

In the following we give a brief description of two appli-
cations of the proposed channel model, namely the genera-
tion of new channel realizations and the subspace–based de-
noising of a channel measurement. Then we apply the cor-
relation tensor–based channel model to channel measure-
ments, and compare its performance with the tensor–based
channel model presented in [3].



3.1. Channel Synthesis

In the 2–dimensional case [1, 2], the joint spatial correlation
matrix is defined as

Rk = E{vec(Hk) · vec(Hk)H} . (17)

Similarly to (12), we can compute an estimate ofRk, de-
noted byR̂k with

R̂k =
1

TW

TW
∑

n=1

vec
(

(Hk)i4=n

)

·vec
(

(Hk)i4=n

)H
. (18)

From the information given in the correlation matrix̂Rk, it
is possible to construct a new random synthetic channelH̃k,
displaying the same spatio–frequency correlation asHk(t)
via

vec
(

H̃k

)

= Xk · g , (19)

where the entries of the vectorg are i.i.d. zero mean com-
plex Gaussian random numbers with unit variance, and

Xk = R̂
1
2

k . (20)

The matrixXk is computed via a 2–dimensional eigenvalue
decomposition of

R̂k = Uk · Σk · UH
k , (21)

where the matrixUk contains all eigenvectors of̂Rk and
Σk is the diagonal matrix containing the eigenvalues. Then
we defineXk as follows

R̂
1
2

k = U · Σ
1
2 = Xk . (22)

By computing the matrixXk we can generate new random
synthetic channels by means of equation (19). In the follow-
ing we show that it is also possible to compute the matrix
Xk from the HOSVD of the correlation tensor̂Rk.

With the help of the MATLAB–like unfolding from Sec-
tion 2, the connection between the estimated 2D correlation
matrixR̂k and the estimated correlation tensorR̂k is given
by

vec
(

R̂k

)

=
(

R̂k

)T

[3]
=

(

R̂k

)T

[7]
= vec

(

R̂k

)

. (23)

To compute the matrixXk, we can either compute a SVD
of R̂k, or apply a HOSVD onR̂k. This relation between
the 2–dimensional model and the correlation tensor–based
model follows from the following derivation. For the reason
of simplicity we first define the following unitary matrix:

Ue
k = U

(3)
k ⊗ U

(2)
k ⊗ U

(1)
k . (24)

With the Kronecker version of the HOSVD (8) it follows
from the latter relation

vec
(

R̂k

)

= vec
(

R̂k

)

=
(

R̂k

)T

[7]

=
(

Ue∗

k ⊗ Ue
k

)

· (Sk)
T
[7]

= vec

(

Ue
k · unvecI×I

(

(Sk)
T
[7]

)

· UeH

k

)

.

HereunvecI×I

(

(Sk)T[7]

)

denotes the inverse matrixvec(·)

operation applied to the 7–th unfolding of the core tensor

Sk. Therefore,unvecI×I

(

(Sk)
T
[7]

)

is a square matrix of

same size aŝRk with I = MRMTNf . The correlation
matrixR̂k can be calculated from the HOSVD of the tensor
R̂k via

R̂k = Ue
k · unvecI×I

(

(Sk)
T
[7]

)

· UeH

k (25)

Please note thatunvecI×I

(

(Sk)T[7]

)

is not a diagonal ma-

trix. Therefore, we have to perform an additional SVD for
the calculation ofXk, as follows

unvecI×I

(

(Sk)
T
[7]

)

= Vk · Σ̃k · V H
k .

Now the matrixXk can be calculated as

Xk =
(

U
(3)
k ⊗ U

(2)
k ⊗ U

(1)
k

)

· Vk · Σ̃
1
2

k . (26)

Especially in cases, wherẽΣk is of low rank it is compu-
tationally cheaper to calculateXk directly fromR̂k using
equation (26).

3.2. Denoising a Measured Channel

In order to reduce the noise in measured channels, we ex-
tend an idea proposed in [2] to the correlation tensor–based
channel model. For every windowk, as defined above, we
construct a tensorZk(t), calculated for every time snapshot
t, using the following equation

Zk(t) = Hk(t) ×1 U
(1)H

k ×2 U
(2)H

k ×3 U
(3)H

k , (27)

where the matricesU (n)
k are computed from the correlation

tensorR̂k given in (12). With the help of the tensorZk(t),
the channel can be reconstructed exactly via the synthesis
equation

Hk(t) = Zk(t) ×1 U
(1)
k ×2 U

(2)
k ×3 U

(3)
k . (28)

Denoising the measurement tensorHk(t) is possible by sim-

ply considering only the firstLn singular vectors ofU (n)
k ,

corresponding to theLn largest singular values of̂Rk. Ln

should be determined with the help of the singular value
spectra of the HOSVD. This is similar to the well known
low–rank approximation of a matrix via the 2D SVD. Thereby,
we assume that the omitted singular vectors span the noise
space. Thus, we obtain the tensorZ

′
k(t) ∈ CL1×L2×L3 and

(Hk)denoised (t) =Z
′
k(t) ×1

(

U
(1)
k

)[L1]

×2

(

U
(2)
k

)[L2]

×3

(

U
(3)
k

)[L3]

,

(29)

where
(

U
(n)
k

)[Ln]

indicates the matrix containing the first

Ln singular vectors along then-th dimension and for the
k-th window.
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Figure 5 shows the reconstruction error for two noisy
synthetic channels, namelyH1 andH2, and two denois-
ing approaches. The channels are created with the IlmProp,
a flexible geometry based channel model capable of gen-
erating frequency selective time variant multi–user MIMO
channels displaying realistic correlation in frequency, time,
space, and between users, cf. [6]. The Figures 7 and 6 show
the geometries of the synthetic channels. The first chan-
nelH1, is richer in multi-path components than the second
H2. The reconstruction error (power) is defined as the Eu-
clidian distance between the noiseless channel and the re-
constructed (denoised) channel

ex =

NfMRMT
∑

n=1

∣

∣vec (Hsynthetic)n
− vec (Hdenoised)n

∣

∣

2
,

(30)
for x = {matrix, tensor}, as also depicted Figure 4. In Fig-
ure 5, the thick lines represent the error obtained via the pro-
posed tensor–based method. The thin lines show the recon-
struction error achieved by applying a low–rank approxi-
mation directly onR̂. We can observe that the tensor–based
approach leads to a better subspace estimate, because of the
additional singular vectors in the frequency direction. This
translates to a lower reconstruction error. The gain with re-
spect to the 2D approach becomes more relevant for richer
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Fig. 6. Synthetic IlmProp scenario characterized by rich
scattering (H1)
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Fig. 7. Synthetic IlmProp scenario characterized by 2 paths
(H2)

channels.

3.3. Validation on Measurements

Next, we apply the proposed correlation tensor–based model
on measurements gathered from the main train station in
Munich, Germany. The multi-dimensional RUSK MIMO
channel sounder employed a16 × 8 antenna architecture
with a 16–element uniform circular array (UCA) at the trans-
mitter and an 8–element uniform linear array (ULA) at the
receiver. The antenna spacing at both arrays was aboutλ/2.
The bandwidth was 120 MHz at a carrier frequency of 5.2
GHz. The frequency spacing was 3.125 kHz which yields a
total of 385 frequency bins. The receiver measured a com-
plete channel response every 18.432 ms. A total of 9104
time snapshots were taken. The mobile terminal was mov-
ing in a Non Line-Of-Sight (NLOS) regime. The environ-
ment was particularly rich in multi-path components.

For the calculation of the channel model we consider
only 25 adjacent frequency bins around the center frequency,
thus spanning a bandwidth of 7.5 MHz. We divide the chan-
nel into windows ofTW = 25 samples in the time domain,
as in Figure 3.

We first consider 10 adjacent time windows of the mea-
sured channel. To assess the behavior of the channel in
the frequency domain, we compare the proposed correla-



tion tensor–based channel model with the model presented
in [3] by means of the ergodic capacity

C = E

{

log2

[

det

(

IMR
+

ρ

MT
Hf,t · H

H
f,t

)]}

.

Numerically, the equation above is computed for subbands
of 5 frequency samples each and by averaging in time and
frequency in every window, so that

C =
1

F

1

TW

∑

f,t

log2

[

det

(

IMR
+

ρ

MT
Hf,t · H

H
f,t

)]

,

whereF = 5, andTW = 25. For the observed 10 windows,
we obtain a total of5 · 10 = 50 capacity estimates.

From each window, using all 25 frequency bins, we com-
pute the correlation tensor as in equation (12) and the pa-
rameters for the model proposed in [3], which we refer to
as thestructured model. Please note that we do not com-
pare our model with existing 2–dimensional ones (such as
Kronecker [7] or Weichselberger [1]), because they are not
suitable for modeling the channel in the frequency dimen-
sion. With the tensor–based models we generate new chan-
nel tensors with exactly the same sizes as the measured one.
We then compute the capacities in the way just mentioned
and we plot the results in Figure 8
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Fig. 8. Capacity comparison between the proposed model
and the structured model [3]. The closer the points are to
the diagonal, the more precisely the modeled capacity fits
the capacity of the channel.

We can see that the proposed correlation tensor–based
model performs better than thestructured model. Since the
estimate of the ergodic capacity is computed from very few
samples, its variance is presumably large. To avoid this
problem and eliminate any influence of the estimation er-
rors on the performance of the two models, we follow the
processing scheme depicted in Figure 9. From one mea-
surement window we compute a reference correlation tensor
R̂ref and from it, using equation (19), we generate 30000
new channel realizations. The latter are used to compute the
capacityCMEAS which we take as reference. From the new

realizations we calculate the parameters for both models and
compare the modeled capacities toCMEAS. The capacity
of the proposed model is denoted byCCTB, as for Corre-
lation Tensor–Based (CTB), whereas the structured model
from [3] is denoted byCstruct. The results are given in Fig-
ure 10. Theoretically, the reference capacityCMEAS and the
capacity obtained from the proposed modelCstruct must be
equal, as they are calculated with the same channel model.
As we take a finite number of samples, the two capacities
still differ slightly, i.e., theCstruct are not on the diagonal.
Also in this case, the proposed channel model shows a better
performance than thestructured model.

From the results shown in Figures 8 and 10, we can see
that the proposed method achieves a higher accuracy, al-
though the gap in capacity to the structured model is not
large. As these figures refer to particular time snapshots ofa
specific channel measurement, we now investigate how the
performances change with different propagation conditions.
To do so, we divide once more the measurement tensorH

into windows of25 time and frequency samples. Then, for
each window, we compute the distance between the corre-
lation tensorsRCTB (correlation tensor–based model) and
Rstruct (structured model), by means of a straightforward
extension of the metric proposed in [8]. It is defined as

D = 1 −
〈vec (RCTB) , vec (Rstruct)〉

‖vec (RCTB) ‖F · ‖vec (Rstruct) ‖F
, (31)

where 〈·, ·〉 denotes the scalar product, and‖ · ‖F is the
Frobenius norm. The latter ranges in the interval[0, 1], and
becomes larger, the more the signal spaces of the two cor-
relation tensors overlap. The metric becomes zero for non–
overlapping, orthogonal signal subspaces. Figure 11 depicts
the results of this comparison (top plot) and the power of the
channel (bottom one). Simulations show that for lower val-
ues of the metric, the structured model performs worse, as
it is incapable of mimicking the full statistics of the chan-
nel. We can observe that there is a correlation between the
power of the channel and the metricD, and thus, between
the power and the performance of the model proposed in [3].
This can be interpreted as follows. For smaller powers, the
channel is richer in multi-path, and the eigenstructure of the
correlation tensor can be better represented by a Kronecker–
like structure.

The validity of this observation needs to be investigated
further with the help of additional channel measurements.
In particular, the capacity might not be the best metric to
compare these models, as it is computed independently for
each frequency bin, and therefore, does not account for any
correlation along this dimension.

The portion of the channel used for the capacity com-
parison from the Figures 8 and 10 are highlighted in Figure
11. In the time windows for which the metricD is high,
both models show the same performance with respect to the
capacity.

4. CONCLUSIONS

We present a novel correlation tensor–based channel
model which is applicable for frequency selective, time vari-
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Fig. 10. Results of the capacity comparison

ant MIMO channels. We assume temporal block-wise sta-
tionarity. The tensor calculus allows us to analyze the chan-
nel eigenmodes also along the frequency dimension, permit-
ting us to cope with frequency selective channels as well.
The model lets us generate new random channels which
display given correlation properties in space and frequency.
Moreover, the tensor–based approach yields an efficient de-
noising application for channel measurements, due to an im-
proved subspace estimate. Moreover, the applicability and
validity of the proposed model is proven on channel mea-
surements.
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