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ABSTRACT

In this paper, we address the problems of precoding and
equalization in frequency-selective MIMO channels by chan-
nel inversion. The channel is assumed to be stable and causal.
As our main result, we give a closed form expression for a
linear precoder which is stable and causal as well as time-
invariant. In particular, our solution further is optimal in terms
of robustness and not restricted to finite impulse response
(FIR) systems.

1. INTRODUCTION

The appearance of multiple input multiple output (MIMO)
systems in mobile communications introduced several new
problems in channel precoding and equalization. The stan-
dard situation here is equalization of a MIMO-channel with
inter symbol interference (ISI). There, due to multipath prop-
agation, signal vectors transmitted successively arrive at the
various receive antennas at different times over different paths
and superpose. In order to cope with these highly complex
effects, multicarrier techniques like orthogonal frequency di-
vision multiplexing (OFDM [1]) may be used. However, as it
has been shown in [2], those techniques can be outperformed
by single carrier approaches in certain settings. While there
exist techniques to equalize a finite impulse response (FIR)
transfer function with single carrier techniques, little is known
on the optimal equalizer for general, non-FIR channels. At
this point we want to contribute with this work.

In our paper we give a closed form solution for a precoder
for a stable and causal MIMO-ISI channel, which itself is sta-
ble and causal. Furthermore, it is linear and time-invariant
(LTT) and of minimum stability norm. A closed form solution
of this precoder is especially interesting for two reasons.

Firstly, we encounter bad approximation properties for the
space of all stable and causal transfer functions. It is known,
that there exist stable and causal transfer functions, which
cannot be approximated by arbitrary FIR functions [3]. Thus,
it may occur that the precoder cannot be found by polynomial
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approximation. Also, since the space has no basis, approxi-
mation by filter banks (even of infinite length) is impossible
in general [4].

The second reason is the minimum norm property. For
MIMO-ISI channels a completely new phenomenon has been
observed. It was shown in [5} 6] that if causality is required
for precoders, channel conditions can emerge which force the
stability norm of any precoder to grow at least exponentially
with the number of transmit or receive antennas in the system.
Since the stability norm is an inverse measure for robustness
as well as for effective receive energy, a high stability norm
results in bad robustness properties and low effective receive
energy. Apparantly, it is especially important in such sce-
narios to use a precoder that minimizes the impact of these
unfavourable channel conditions, which is a minimum sta-
bility norm precoder. Note, that the minimum stability norm
over all stable and causal LTI-precoders is the same as over all
causal but not neccessarily stable, linear or time-invariant pre-
coders [6]. Therefore, the requirement of being stable and LTI
actually does not decrease the precoders performance. Since
we can calculate an equalizer for a MIMO channel by calcu-
lating a precoder for its adjoint channel, we obtain a formula
for equalizers, too. In that case, instead of being a measure
for effective receive energy, the stability norm is a measure
for noise enhancement.

There has been various previous work on single carrier
equalization in MIMO-ISI channels. In the case of FIR chan-
nels, the problem has been analysed in [2]. Moreover, op-
timal precoding has been modeled as a convex optimization
problem in [7], while it has been tackled by a semidefinite
programming approach in [8]]. In the general case of non-FIR
channels, the focus has been set on the norm trade-off be-
tween causal and non-causal equalizers in [6]]. Most notably,
the minimum norm precoder was characterized geometrically
as the precoder which maximizes the angle between two spe-
cial spaces in [9]. A related problem (there, contrary to our
approach, the equalizers don’t have to invert the channel) has
been solved in [[10] for the case that there are as many transmit
as receive antennas.

The structure of this paper is as follows. First, section



2] comments on notations. Then, section [3] introduces our
model of the MIMO-ISI channel in the 2-domain. Sectiond]
explains Z-domain precoding and defines the problem state-
ment. In section 3 our formula for the stable and causal LTI-
precoder having minimum norm is derived. Conclusions fol-
low in section[6] Finally, the appendix in section[7]states some
of the lesser known theorems used as well as proofs skipped
in the main text for reading convenience.

1.1. General Remarks

The classic approach to linear MIMO-ISI equalization with
single carrier techniques is the calculation of a FIR equalizer
for a FIR channel. Here, the focus traditionally has been set
on the algebraic properties of the equalizer (see e.g. [11}[12]]
and the references therein). However, also the analytic prop-
erties like stability, robustness or system perfomance are im-
portant and have to be investigated. As mentioned in the in-
troduction, the stability norm is an important measure for pre-
coder performance regarding those criteria. How difficult it is
to investigate the analytical properties depends very much on
the underlying MIMO-system [6].

1. In case of a square system the precoder is unique, given
that the system is invertible. Then, of course, taking
influence on the precoders stability norm is impossible.
We see that in the square case, optimal precoding is
trivial.

2. Assume, the system is precodeable and non-square,
but precoders are not required to be causal. Here,
the precoder having optimal stability norm is known
to be the pseudoinverse of the transfer function, i.e.
H*(HH*)~!. Again, for non-causal precoders, opti-
mal precoding turns out to be simple.

3. The problem becomes intricate for precodable, non-
square systems, where precoders are required to be
causal. While there exists a solution with optimal sta-
bility norm, i.e. Tyy(TuaTy;) " (Tw is the Toeplitz op-
erator associated to the transfer function), this solution
incorporates some bad properties. As a most impor-
tant one, it is not time-invariant. On time-invariant pre-
coders virtually nothing is known. Now, optimal pre-
coding becomes a difficult task.

It is interesting to see, that not only in equlization but also
in other fields the causality constraint introduces severe prob-
lems. Recently, two interesting results have been obtained.
In approximation theory, there exists no linear approxima-
tion method for certain stable and causal filters which itself
is causal and stable. Only if the causality or the stability con-
straint is dropped, a linear approximation method may exist
[3]. In the representation of linear systems, filter banks are
of interest. With the help of the generalized Fourier series
and a filter bank, a explicit representation of any filter can be

gained. It turns out, that for an arbitrary filter bank for the disc
algebra (which is a subset of the space of stable and causal fil-
ters) even the slightest non-causal distortion in the filter can
render the representation by this filter bank impossible [4].

In both cases dropping of the causality constraint solves
the issues. However, that is a bad idea in general, since causal-
ity is a crucial filter property. A filter has to be causal, in or-
der to be realizable. Thus, causality constraints turn out to be
a necessary evil, which have extensive theoretical impact in
various areas.

2. NOTATIONS

In the following, the complex numbers will be denoted by C
as well as complex matrices with n rows and m columns by
C"*™_ For vectors we introduce the shorthand C" := C"*1,
The complex unit disc will be referred to as D := {z € C :
|z| < 1}. For a complex number z or matrix A, Z and A are
the (elementwise) complex conjugates, while for a set M, M
refers to the closure of M.

Since matrix-valued functions are going to be used fre-
quently, we denote them by bold, upper case letters like A.
An asterisk supscript A* means taking adjoints. In the case of
a matrix-valued function that is pointwise transpose and con-
jugation, A*(z) = A(z)* = A(z)T. Vector-valued functions
are given by bold, lower case letters like a.

Hilbert spaces are always referred to by calligraphic cap-
ital letters like H, the associated scalar product by (-, ).
Note that in general, the adjoint A* of a bounded linear
operator A with domain domA, which is acting between
Hilbert spaces F and G, is uniquely determined by the re-
lation (Af, g)g = (f, A*g) # for any f € domA.

3. SYSTEM MODEL

Let H be a causal MIMO system with N inputs and M out-
puts and a time domain input-output relation

Un =Y Hptn p+ve, n=01,2.. (1)

k=0

Here the series of matrices {H},}72, identifies the channel
impulse response, while the series of vectors {z;}7°, and
{yr}72, denote input and output signals, respectively. We
set v, = 0 for k¥ < 0. Additional noise is provided by the
series {Vg 132 -

The input and output signals are assumed to be of finite
energy, i.e.

o0 o0
Yo llzklliy <ooand Y lyklEar < oo
k=0 k=0

While the impulse response is causal by definition (H; = 0
for k£ < 0), we further assume its stability (finite energy input
signals yield finite energy output signals).



In order to go on, the time domain relation of the MIMO
system has to be transferred into the so-called Z-domain. To
transfer an arbitrary sequence { fj}3,,, we consider the -
transform

)i 2 f(2) =Y fud*,  2eD,
k=0

with inverse transform

2) = )2, .

fo ==—

= — (z)2~ Dz,
21 |z|=1

Note that choosing z € oD = {e? : § € [0,27)} instead
of z € D would result in a Fourier transform. Similar to the
Fourier transform, a convolution theorem applies. Thus, when
applying the Z-transform to the time domain input-output re-
lation @, it is transferred into the Z-domain relation

y(z) = H(z)x(z) +v(2),

whereas H is the Z-transformed impulse response called
transfer function and x and y are the Z-transformed input and
output signals, respectively. The Z-transformed additional
noise is given by the term v.

In order to express to properties like causality, stability,
finite energy or time-invariance in the Z-domain, the Hardy
spaces have to be introduced.

zeD,

Definition 1 Let the vector valued Hardy space H?(C") be
the space of all functions

f:D—=C"  f(z)=>_ [ feecCn
k=0
which have finite H 2_norm, i.e.

1 W32y = D Il
k=0

and the matrix valued Hardy space H* (C™*™) be the space
of matrix valued functions

(QCH < 00,

F:D—C™"  F(z)=)» Fz*  FeC™",
k=0

with finite H*>°-norm, i.e.

I1F(2)z]

HF”HOO((C’VUX’H) = sup sup e
lzllcn

z€D zeCn\{0}
The H?- and H>®-norms are also known as energy and sta-
bility norm, respectively.

It can be shown that a series is stable, causal and LTI in the
time domain if and only if its Z-transform is H°. Similarly,
a sequence is of finite energy, causal and LTI if and only if
its -transform is H2. Thus, we have H € H>®(CM*N) as
wellas x € H2(CV) andy € H?(C™). For additional infor-
mation on how time domain properties translate into spaces of
functions in the Z-domain, we refer to [13].

4. PRECODING IN THE 2-DOMAIN

4.1. Definition and Properties

We start with a precise definition of a general linear precoder.

Definition 2 We say that G is a precoder of H, if and only if
x(z) = H(2)G(2)x(2)

forany x € H*(CM) and » € D.

A precoder can be used to calculate the necessary transmit
signal X = Gx such that any signal x is received at the output
of the channel, i.e.

x(z) =~ H(2)X(z) + v(2).

Precoders of interest will be those which are stable, causal
and LTI. As mentioned in the previous section, the following
definition is equivalent to the definition usually given in the
time domain.

Definition 3 A precoder G is called stable and causal, lin-
ear and time invariant (or simply a H > -precoder) if and only

ifG c Hoo((cNXJVI) .

For further investigations, the following two insights on
H*>°-precoders are required.
4.1.1. Existence of H-Precoders

Due to the matrix corona theorem, which can be found e.g. in
[[L4]], it is known that such a H°°-precoder exists if and only
if H fulfills the condition

H(2)H(2)* > %1 ()

forad > 0 and any z € D.

4.1.2. The Minimum Stability Norm

The minimum norm of all H*-precoders of H is given by
the well-defined term

1
gt = inf [P (H )| g2cvy | -
Hy”H2(CM):1

Thereby P, denotes the Riesz projection into Hardy space,
ie.

P.f(z)= kazk € H?
k=0

for any given

flz)= Z frz" with Z | £ell? < oo.

k=—o00 k=—o0

This can be seen with the help of Corollary[TT](see appendix).
The corollary further shows that this bound is sharp, i.e. there
exists a H>-precoder G of H with |G|l = 6. .



4.2. Advantages of Minimum Norm Precoding

Choosing a precoder having minimum norm gives two major
advantages in general.

4.2.1. Optimal Robustness

By the term robustness we understand sensitivity against er-
rors in the channel measurement. Assume a perturbated trans-
fer function

H(z) = H(z) + A(2),

where H(z) is the unperturbated channel and A(z) a small
error. Because of

Ix = HGx||2 = | AGx|2 < [|A ool Gl oc %12

the enhancement of the reconstruction error when using a pre-
coder G of H is upper bounded by ||G||o. So choosing G to
have minimum norm gives the smallest bound on the resulting
reconstruction errors.

4.2.2. Low Loss in Effective Receive Power

Since in practical applications the transmit power is upper
bounded, ||X||3 < P42, and the power enhancement of the
precoded signal is bounded by the precoders norm,

I3 = 1Gx]13 < G113,

we see that the precoder having minimum norm garantuees
the highest amount of availible transmit power. If an equalizer
instead of precoder is calculated, this will result in low noise
enhancement instead.

4.3. Problem Statement

After having introduced precoding in the Z-domain and the
advantages of minimum norm precoding, the problem state-
ment can be given.

Let H € H>®(CM*N) be a stable and causal MIMO-
channel, which fulfills equation (Z). We want to obtain a
closed form expression for a stable and causal LTI-precoder
G with optimal robustness properties. As seen in this section,
that is a function G € H*(CN*M) which satisfies HG = I
and further has minimum H °°-norm.

5. THE MINIMUM NORM PRECODER

In this section a closed form expression for the minimum
norm precoder will be derived. Since that is a problem
which is hard to tackle, several non-standard tools from
mathematics, mostly operator theory, are required. All non-
standard operator theory theorems used can be found in the
appendix. Nevertheless some understanding of linear opera-
tors and Hilbert spaces is necessary.

5.1. Derivation of the Formula

In section [4.1] the minimum norm for precoders has been
given as 0_ . We also showed that actually a precoder with
norm ¢ 1 exists. From now on, consider a scaled transfer
function H := 0.H instead of H. Then, a H-precoder of
H having norm at most one has in fact minimum norm. In
this subsection we will show how to obtain such a precoder.

The following result is a corollary to a profound opera-
tor theory theorem, which can be found in the appendix. It
states the existence of some Hilbert space H and a function
W. Those are auxiliary means, which will be used for the
construction of a minimum norm precoder. While their prop-
erties are not of interest in this part of the paper, Sections
and [5.2.3]explain in detail how to obtain H, and W.

Corollary 4 A H°-precoder of H having norm at most one
exists if and only if there exists an auxiliary Hilbert space Hy
and a holomorphic function W : D — L(Hgy, CM) such that

H(z)H(w)* — I

S = WEW () ®

for any z,w € D, whereby L(Hgy, CM) denotes the space of
bounded linear operators from Ho to CM.

Proof In Theorem [9] (see appendix) choose d = 1, & =
E3=CM, & = CN and B = I . Since for d = 1 the gen-
eralized Schur class &7 is the class of H*°-functions having
norm at most one, the corollary follows. O

Now, assume equation (3)) from corollary EI holds for H.
Then we can define the following mapping.

Definition 5 Set

Dy = span{[wgzg;)z }y:weD,yeCM},
Ry = span{[W(Iw) }y:weD,yeCM},
oo W %
Vo o Do*RO,ZCk{w%(lﬁﬁi) } K
k=0 k
o0 W *

k=0

Note that Dy C Ho @ CY and Ry C Ho @ CM. As not
obvious, we proof the following proposition in the appendix.

Proposition 6 V is a well-defined isometry.

The next theorem shows how to determine a precoder hav-
ing norm at most one. The proof uses a method which appears
in [15].



Theorem 7 Let

A B Ho Ho
Voo = { } e = D .
C D N oM
be the continuation of Vy with zero, i.e.
o Voh ,h € Dy
Vooh = { 0 .heDi

Then, R
G(z):=D"+B*(I — zA*)_lzC*

is a H*-precoder ofI:I having norm at most one.

Proof By definition of Vyy it is
A B wW (w)* W (w)*
{O DH H(w)’ }y{ ! ]y
for every w € D and y € CM. This yields two equations,
AwW (w)* + BH(w)* = W (w)* 4)

as well as _

CwW (w)* + DH(w)* = I. 5)
Equation (@) is equivalent to

BH(w)* = (I — Aw)W (w)*.

Since Vo is a partial isometry it satisfies |Vpo|| < 1 and in
particular ||A|| < 1. Thus (I — Aw) is invertible for any
w € D by the Neumann series. Multiplying by (I — Aw)~!
now gives

W(w)* = (I — Aw) "' BH(w)*.
Plugging W (w)* into () then results in
(Cw(I — Aw)~'B + D)H(w)* = 1.
Taking adjoints and replacing w by z gives
H(z)(D* + B*(I — zA*)"'20*) = I.
Thus,
G(z) = D* + B*(I — zA*) 120", zeD,

is a precoder of H. Since that is a holomorphic function and
by Lemma[I0| (see appendix) it is upper bounded by one,

|D* + B*(I — zA*)"'20%| < 1,
GisaH *-precoder for ﬁ(z) having norm at most one. [l
By observations previously made we know that Gisa
H*®-precoder of H having minimum norm. Since that is the

case if and only if §.G is a H>°-precoder of H having mini-
mum norm, we get our main result.

Corollary 8 The function G given by
G(z) :=6. (D" + B*(I - zA*)’lzC’*)

is a H®®-precoder of H having minimum norm.

5.2. Structural Properties

The next question of interest is of course, what the operators
A, B, C and D do look like. While we leave that topic open
for future work, some starting points shall be given.

5.2.1. The Operator D

It is relatively simple to reveal some of the structure of D.
Note that it is an operator from C" to C* and therefore in-
dependent of w. By setting w = 0, we obtain

e 5 Laor o= [0 ]

and thus DH(0)*y = y for any y € CM . Therefore, it is

D |gi(oy-= (FL(0)H(0)") "' H(0).

5.2.2. Reproducing Kernel Spaces

It is also instructive to know how the function W and the
Hilbert space Hp, which were used in the construction of
A, B,C and D in Corollary ] can be chosen. Therefore, we
have to introduce the concept of a Reproducing Kernel space.
Some more details on Reproducing Kernel spaces and choos-
ing Hy and W can be found in Section 3.3 of [16].

For our purposes we can use the following definition. As-
sume a Hilbert space F of C"-valued functions on . A Re-
producing Kernel of F is a C*"-valued function

k(sz) =: kw(z)v Z,w € ]D)a

such that
1. kyy e F
2. {f, kwy)F = (f(w),y)cn

forany f € F, w € Dand y € C". Every Reproducing
Kernel is positive in the sense that

d
Z <kz_7 (Zz)ijyz> > 0
i,j=1
forall z1,...,2g €D, y1,...,ya E C"andd = 1,2, .....

Now, for every positive kernel a fundamental result states
that there exists a unique Hilbert space H (k) such that k is a
Reproducing Kernel of H(k). It is possible to construct H (k)
from k. Therefore, choose H (k) to be the function space
which is the completition of

span { K,y : w € D,y € CM},

obtained after factoring out any elements of norm zero,
equipped with a scalar product

(K, y1, szy2>H(k) = (K, (w2)y1,y2)cm -



5.2.3. Hoand W (z)

Now, Ho and W (z) as used in Corollary[d|can be specified. It
is always possible to choose H to be the Reproducing Kernel
space created by the (positive) kernel

H(z)H(w)* — I

K (w) = 1—zw

i.e. Hp = H(K). Then, the point evaluation

W(z)f = f(2),

is a valid choice for W. Due to the Reproducing Kernel prop-
erties it is

<W(U))f, y>(CM = <f(w)7y>(CM = <fa Kwy>H0~

Thus, the adjoint is given by W (w)*y := K,y and the de-
sired decomposition

zeD, f e Hy,

I:I(z)I:I(w)* -1

1—zw

W(z)W(w)* =W (2)Ky, = Ky(z) =
of K (w) from Corollary 4] holds.

6. CONCLUSIONS

In our paper we derived an explicit formula of a stable and
causal LTI-precoder with optimal robustness properties for
precoding in stable and causal MIMO-ISI channels. The ob-
tained solution is not limited to the FIR case, but applies to
general transfer functions. By using the Z-transform, the
problem has been modeled as the problem to find a mini-
mum norm H *°-right inverse of a °°-function. Future work
should concentrate on further examination of the used opera-
tors structural properties.

7. APPENDIX

We now give the proof on V; being well-defined and isomet-
ric, which has been omitted in subsection[5.1}

Proof (of Proposition[6) We will first show that V} is actually
amapping in terms of every dy € Dy being mapped to exactly
one g € Ry. Therefore, we have to show that from

{ W W (w1)* _ [ we W (w)* }
H(wl)* ] Y1 = H(’wg)* 2
it follows
W (wy)* ] [ W (ws)*
|: I ] Y1 = I I :| Y2

for any wy,ws € D and y;,y2 € CM. Because of equation
@) it is

W ()W (w)* + 1 =

H(:)H(w)* + zaW (2)W (w)*

for any z,w € D. Therewith, we get

[ @V (1)1 } { WV (w2)“y2 ]>
H(wi)*yr |7 H(w2)"ye Ho@®CN
= (0 W (w1)*yr, D W (w2)*ya) s,

+ (HF(w)*y, H(w )yz
H(wp)* + wai W

(
) +I)y17 >
ws)* y2>H0;F 1,y2>(cM

{y
RERED .
(©)

for arbitrary wy,ws € D and y1,y2 € CM. Since in Hilbert
spaces one has || - ||2 = (-, -), now from

)W (1) )y, 92)

cM

I
T
| e—|

=
< &

~—

2

H{ ’LU1W wl yl 1 [ w2 W (w2) 2 } —0
H(wQ)*yQ Ho@®CN
it follows
S 2
H{ W(wi)yr | | W(w2)"y2 ] —0
yl | L y2 HO@CM

and Vj is a valid mapping. Next, Vj is a linear operator by
construction. Finally, V; is a isometry since for equation (6]
we have

(Voh, Vol)roecn = (hy ) pecn
for any h € Dy. (]

Next, we will state two results from operator theory which
have been used in the proof of Theorem [7]in Subsection [5.1]
The following result is due to Ball and Trent in [16] (Theorem
5.2).

Theorem 9 Let £, & and E; be three Hilbert spaces and
suppose that A and B are given holomorphic functions on
D? with values in L(Ez,E3) and L(E,E3) respectively. In
order that there exist F' € Sy(&1,E2) with A(2)F(z) =
B(z) on DY, it is necessary and sufficiant that there exist
auxiliary Hilbert spaces Cy, ...,Cq and d holomorphic func-
tions Hy(2),..., Hy(z) on D, with Hy(z) having value in
L(Ck,E&3) for k =1, ...,d, such that

d
A(z)A(w)* — = (1 — zpwp) Hy(2) Hy,(w)*
k=1

forall z = (z1,...,2q) and w = (w1, ..., wq) in D
The next lemma can be found in [[15].

Lemma 10 Let

[A B].%l 7:92
C D P P



be a bounded linear operator, where Hy, Ho and K are

HA B}H < 1. Then for

Hilbert spaces and assume c D

|z <1,
|A+2B(I —2D)"'C| < 1.

This last corollary follows directly from Theorem 9.2.1 in
[177]], which is also known as the Toeplitz Corona Theorem.

Corollary 11 Assume § > 0. A H*-precoder G of H with
|Glloe < 671 exists if and only if it is

| P+ (H*Y)|| 2 ey 2> Oyl a2eny

foranyy € H*(CN).
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