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ABSTRACT paper, we consider the transmitter diversity scheme pexpos

_ . in [2] when the underlying noise distribution is impulsivée
In this paper we propose a_”d evaluate d|f_ferent robust dete uggest different robust detectors which are able to cofie wi
tors for a Fransmlttgr diversity scheme Wh!C!’l can be L_Jsed foll;“npulsive noise environments.
the downlink of a direct-sequence code division multiple ac

CDMA ¢ T Isi . . ¢ IThe paper is structured as follows: In Section 2, the sys-
cess ( ) system in impulsive noise environments. %em model is explained and Section 3 introduces an impulsive

is well known that the performance of the linear detector IS 0ise model. In Section 4. three different robust detecoes

sevelr_ely dedgrtad?d Whenl;mpu(;swer':/less t(.)CCl:.rs' Th(ej prOposgaesented and their computational complexity is evaluated
non-iinear detectors are based on Vi-estimation and Use NOJ .oy 5 py means of the-notation. Simulation results are

linear score functions. Simulation re_sults show that they P shown in Section 6 and conclusions are drawn in Section 7.
form considerably better than the linear detector when im-

pulsive noise is present and do not loose much of their per-

formance in the Gaussian case. A comparison of the robust 2. SYSTEM MODEL

detectors in terms of performance and complexity is pravide . . .
We consider a system of two transmitter and one receiver an-

tennae [2]. At the transmitter we have the following signal

1. INTRODUCTION model for the signals transmitted from antempandt,
Diversity concepts are needed to cope with multipath fading t1 = 1/vV2(bici + baco)
in wireless communications. The idea is to transmit the same ta = 1/v2(baci — bicy). Q)

information several times over channels that fade indepen-

dently. Time and frequency diversity lead to lower datagateWhereby, by are the transmitte@inary Phase Shift Keying
and are therefore inconvenient in many applications. In [1](BPSK) symbols and, ¢, are orthogonal spreading sequences
Alamouti proposed a spatial diversity method with two trans With unit norm and lengthV. We assume a Rayleigh fading
mit and one receive antennae. This method ensures full dag@annel which is constant across two consecutive symbols.
rate while maintaining the same total transmit power that d he ith element of the received signal is

single-transmitter antenna would have used. This methsed ha . .

been adopted in [2] for a CDMA system so as to improve ri = bt ot £ g, d= 1 N 2)
the quality of the downlink channel where the assumption ofvhereh; andh, are the complex channel coefficients and
Gaussian noise was made. is i.i.d. complex noise with probability density functigodf)
However, in reality, this assumption is not always true. Inf, (x). The signal model can be written in matrix form as
particular, impulsive noise can occur in urban areas due to

switching transients in powerlines, automobile ignitiinp- r = ASf. +n )
rescentlighting and other electromagnetic interferenoeces

[3]. The preset_nce Iotf w;:p_ulswet(l.ﬁ. non-Gausf&an) OIS atrix andd. = Hb is to be estimated. In [2] it was claimed
causes conventional techniques to Nave poor performance. y; , exira spreading codes are required and the method

Hence, robust detectors are required whose pen‘ormanceﬁOrks with any orthogonal codes and thus we could gener-
near optimal in the Gaussian case and does not degrade sids, 4 codar; — [c; 0] ande, — [0; c] which reduces the

nificantly if the underlying noise distribution changesttis complexity of the system.

This work was partially supported by the Deutsche Forschgemein- TO recoverf. one performs m.atChed filtering or decorreIaF-
schaft (DFG) ing where the received signal is correlated with the spreadi

where A is the transmit amplitude§ = [c; c2] is the code




sequence8. = STr. In order to demodulate the symbals 3. IMPULSIVE NOISE MODEL

andb,, the decorrelated signél = [0.; 6.2]7 is multiplied

by the hermitian of the channel mat#% = [h; ho; —hy hy] In[3] a canonical model based on measurements and stakistic
where fullchannel state informatioCSI) is assumed at the physical modelling was developed. Due to its complexitg thi
receiver and only the real part is considered to recover theodel is mathematically impractical. An approximatiorg th
BPSK symbols, i.e.b = sgn(R{H'0.}) [2]. If n has a ¢-Contaminated Gaussian mixture model, is used in this work

Gaussian pdf the estimatesf andd,, obtained by a linear in order to simulate impulsive noise behaviour. The model

decorrelator are optimal. consists of two Gaussian components
However, if the distribution of is not Gaussian but has im- 9 )
pulsive behaviour, the estimatis andd,, are degraded sever- fal) = (1 =) fa(w;0,v7) +efa(a;0,k07). (9)

ely and the BER increases. oy : . .
. . here fo(x; 1, 0%) is a Gaussian pdf with meagnand vari-
We propose a robust non-linear detector, developed in [4 nceo?. 'I('ypically)values for andr are0 .01 < & < 0.1 and

for decorrglating th? received quce-time spreading (SET'S) 10 < k < 100 for wireless communication channels where

?huencels, "3'.t0 es_tlma@@l atndefczﬂ:n a ro(I;Julst \]:v;y. S:?Ck'gg . impulsive noise occurs [5]. Note that the variance of the sec
erea tan |magk;:1qry ?ﬁr S Ot ; r;o et 0 quda :on ©) "Mond term is significantly larger than that of the nominal first

one vector, one obtains the extended system mode term and hence leads to impulsive behaviour. The total noise

B power is
y = AL0 +v. (4) 0? = (1 —eW? 4 err?. (10)
We will study the impact of changes of the shape of the noise
o R{r} r— S 0 distribution by varying the parameteandx while the overall
S} L0 S variance is fixed to unity.
o (RO} _ ( Rin} )
{0} ${n} 4. ROBUST APPROACHES

ando is aN x 2 matrix of zero elements. If we consider one In Section 2, it was mentioned that outliers have a delete-
user with two orthogonal spreading codes the problem thefious effect on the estimates. However, if one replaces the

becomes one of solving Gaussian location score function by another influence func-
tion, this effect could be eliminated. Several parametnid a
R 2N 2 non-parametric approaches have been considered [7, 8]. How
0= arg;HiD > —log fn <yz -> (Du«%) (6)  to choose the influence function is described in this section
=1 k=1

Note that, the system model may easily be extended to multf-1- M-estimator and One-step M-estimator

ple users by allowing the sum in brackets torange éver 1 Huber [4] proposed an estimator which minimises the maxi-
to 2M, whereM is the number of users. In this case, whenmum asymptotic variance of the least favourable noiseidistr

several user communicate at the same time, Equation (6) rgution over the class ef-contaminated Gaussian mixture
quires the spreading sequences of the other users in order to

decorrelate the signal. ni ~ (1 —e)N(0,0%) + eH (11)
As in [2], we restrict ourselves to the one user case in oaler t _ ) _
demonstrate the method. Assuming that the noise distoibuti Whereo < e < 1, V'(0,?) is the Gaussian pdf with mean 0
f,.(x) has a single maximum we obtain a unique solution by2nd variance> and’{ is any symmetric zero-mean pdf.

solving the following equation system The influence function of this minimax estimator, also known
as the soft-limiter, can be expressed as [4]
2N 2
x 2
Liro | yi — Db | =0 k=1,2, (7) _ )z |z < kv
2 < 2 VO = ksign(e) el >k D)
wherep(z) = —0dlog f,,(x)/0x is the location score func- wherek, ¢ andv are connected through
tion which equalsr/o? in the Gaussian case and reduces o (kv) -

Equation (7) to least square$, is obtained fron¥ by the —Qkv) = (13)

. . kv
simple transformation

2(1—¢)’

172 o0 (132 -
1 ; d(x) = t=e~2 andQ(t) = —== [ e~ = dx. In practices
9c_(0 0 Q)e. @ "= =71 _ ,
J andx are not known. For this reason the influence function



of Equation (12) was approximated in [5] as

~

-

Y 2] < ko Initialisation
_J) 2 Z| = RO Set i=0. Obtain an initial estimate 6f
(@) = { ksign(zx) |z| > ko? (14)
) ) 2. Determine the residuals
wherek = 1.5/0. Note thato? is the overall variance of . Féi
the noise distribution and? is the variance of the nominal v=r-
distribution. . .
3. Estimate the weights and

The estimation procedure for determinifign a robust way
is as follows First, obtain an initial estimafé using linear . AT o
decorrelation and determine the residuals. Second, perfor a= E[gf}’)g(v) 7 Elg' (V)]
one iteration step of a Newton-Raphson algorithm in order tp ¥(z) =4a'g(z)

find the next estimaté ! . This is repeated until convergence

construct the influence function

s reachod o 4, Uipdate :[he parameter estimates
” = V(¥) e
= vy -re) | \?vher:f:iﬁb T(rtl;wlgl)zﬂ’(g)li
0+t = ¢ +u@'D)'ITZ, i=0,1,.. (15)
5. ) . . 5. Check for convergence
wherey = 1/0% is a step size parameter. The algorithm stops pitl_gi

If

| > e, stop, where € R

when|fit! — §i| > ¢ .|| wheree € R is a small number. M=
Note that the pseudoinver€8™T")~'T'T can be computed of- is a small number.
fline. otherwisei — i + 1 and go to step 2,

Many other influence functiong(z) may be suggested, for
exampletanh(z /o) which is a smoothed version of the soft-
limiter.

Another possibility is to apply only one step of the Newton_Unde_r certain conditions one obtains the optimal leastreagua
Raphson algorithm. This does not necessarily lead to be§plution as [6]

resul;s but still proy|des robustness Whl|§ maintainingieo 4 = Flg()e()] ' Flg (2)]
putational complexity on a low level. This is known as the

one-step M-estimator.

(18)

whereE[] is the sample mean in practice. In [7] it has been
shown that the small sample performance of this estimator is
4.2. Parametric Estimator improved when the constraingle a, = 1 anda, > 0

are met. The first constraint controls the scale while the sec

In the previous subsection, an M-estimator used for estimagq constraint ensures the estimated influence function-is a
ing 6 with a static influence function was described. Th'stisymmetric and positive far > 0.

M-estimator, like any minimax estimator, may be far frompe asymptotic variance of this estimator @8 — oo is
optimal, away from the least favorable distribution. Inerd given by [7]

to provide more flexibility to the underlying noise distribu aTElggT]a

tion, we consider an adaptive M-estimator, developed if|[6, V(F,¢) = @TEE)? (19)

which uses an adaptive influence function constructed from a ) ) ) ) ) )
linear combinations of basis functions However, if ones applies this estimator to the receivedadign

considered in Section 2 the following steps have to be per-
B formed. The algorithm is similar to Equation (15) with the
d(x) =) agy(x) =a"g(x). (16)  difference that an estimate of the score function replaged b
b=1 the influence function.

The basis functiong, (z), .., gg(x) are contained in the vec-
tor g(z) anda contains the corresponding coefficients. The ) ) )
bases have to be chosen in such a way that they provide’s?-1. Choice of basis function

good approximationop. o _ Itis clear that the more bases included in the3¢he better
The criterion used for estimating the coefficieats to min-  he asymptotic performanceV( — oc) of the estimator. On
imise the mean square error between the made) and the  the other hand, for small samples, the more bases the more
true score functiop(z), i.e., parameter to estimate and hence the more uncertainty in the
estimation procedure. In addition to that the complexity of
a=argmin E [(¢y(z) — ¢(2))?] . 7) ; - ; ;
the algorithm increases by increasing the number of bases.

a



Hence, a tradeoff between performance and complexity he
to be achieved. In Section 3, we introduced the Gaussia
mixture pdf as a common model in wireless communication:
where impulsive noise occurs.

Without loss of generality, the basis set used here
B = {91, 92,93, 94}, consists of four Gaussian mixture score
functions with parameters(¢,x) of (0.01,10),
(0.1,50), (0.02,100) and(0.1, 100) respectively. Each is stan-
dardised to a distribution with unit variance. These folgdsa
are positioned in thé:, x) parameter space in order to cover
the parameter values expected in practice.

The choice becomes apparent if one considers the asympto

efficiency of the adaptive algorithm as shown in Fig. 1. Using 15 v -16
log(kappa) -12 14 log(epsilon)

Asymptotic relative efficiency

-1.8

Fig. 2. Asymptotic relative efficiency of Huber's minimax
M-estimator to that of the adaptive algorithm.

1.005

certain number of times and cannot be predicted beforehand
because they strongly depend on the particular channel and
noise environment. For the adaptive algorithm the weights o
the basis functions have to be estimated for constructiag th
influence function, where matrix inversion is required.
In order to evaluate the computational complexity of the dif
ferent algorithms we count the number of basic additions and
multiplications, i.e.O(R + R) andO(R - R). Each mathe-
matical operation may be reduced to basic calculations, e.g
log(kappa) log(epsion) O(CN*2.R2*N) = 4N.O(R-R)+N-O(R+R). For the two
M-estimators with static influence function the complexfy
Fig. 1. Asymptotic efficiency of the adaptive algorithm.  evaluating the functiony(¥) is negligible. For the paramet-
ric detector the complexity strongly depends on the chaice o
the basis seff defined above, the asymptotic efficiency of thebases. In order to obtain a general and fair comparison which
adaptive estimator is over 0.98 for practically relevadtiga s valid for any set of bases we neglect the complexity of-eval
of (¢, k). uatingy (V) for all three detectors.
Furthermore, the advantage of such a scheme over Hubeffhe computation of the pseudoinverse tak&s\/20(R-R)+
minimax M-estimator is seen in Fig. 2 which shows the asymp/ (N (M — 1) + M (N — 1))O(R + R) + O(M?) iterations.
totic relative efficiency of Huber’'s approach to that of theAfter several simplifications one obtains the expressions i
adaptive algorithm. The adaptive algorithm has lower asympTable 1.
totic variance ovef0.01 < ¢ < 0.110 < x < 100}. In B is the number of bases ardg, I, are the number of iter-
heavily contaminated noise environments the adaptive-alg@tions until convergence is reached. To summarise we can
rithm is seen to perform significantly better. say that the one-step M-estimator has a complexity which is
proportional toM N while the complexity of the other two
estimators is proportional th M N andI; M N respectively.
In general, it takes four to five iterations until convergers

If we evaluate the algorithms proposed in Section 4 in termgeaCheOl for the I\/_I-est_lmatqr where_a_s the parametnc_dq!tecto
eeds seven to eight iterations until it converges. Thisies d

of computational complexity we have to consider three cos{ ‘ . .
factors. The first factor is the cost of computing the pseuzo the fact that the influence function has to be estimated.
doinverse(''T)~'T'T which can be done offline and is the
same for the three different algorithms. The second factor 6. SSIMULATIONS

is the cost of one iteration which appears only once for the

one-step M-estimator. However, for the M-estimator and th&Ve compare the linear decorrelator, the one-step M-estimat

adaptive algorithm, the iteration steps are performed an urthe M-estimator, a smoothed version of the M-estimator with

Asymptotic variance
o
©
©
@

5. COMPUTATIONAL COMPLEXITY



O(R + R) O(R -R) | O(B%)

one-step M-estimato AM(2N +1) 16MN +4M + 2N -
M-estimator I -4M(2N + 1) I - (16MN +4M +2N) -
parametric detector | I5[B(1+ B(N +1)) +4M (2N +1)] | L[N(B?+1) =2+ (16 M N +4M + 2N)] I

Table 1. Comparison of the robust algorithms in terms of computeticomplexity

the influence function)(z) = tanh(z/c) and the paramet- higherthan the BER of the other non-linear detectors. We ob-
ric adaptive estimator for different noise distributioftsvas  serve that the one-step M-estimator gains al3a in per-
found out that there is hardly a difference in performancdormance against the linear detector while we gain apéis
between the soft-limiter and thenh(x) influence function when considering the parametric estimator and M-estimator
used for the M-estimator. For this reason only the curves fowhich almost have the same performance. This is due to the
the M-estimator are plotted in the figures. The channel is adact that for this particular value af andx, both estimators
sumed as Rayleigh fading with parameter 1/1/2 and we  have the same efficiency which can be verified in Fig. 2.
consider Hadamard codes for the spreading sequences wittowever, when we consider a more impulsive noise environ-
lengthN = 128. TheBit-error-rate (BER) is calculated over ment, i.e. we increase the percentage of contamination, we
10000 MC simulations. Simulations with different orthog- obtain a slightly different result. In Fig. 4 simulationsear
onal codes, mentioned in Section 2, showed no significarghown for the noise parameters- 0.07 andx = 45. Again,
difference in performance. Thgignal-to-noise-ratidSNR)

is defined as the power of the received signal divided by th
noise power before decorrelation of the spreading segsenc
is applied, i.e.

2 2 2 10 F

SNR 5

(o

We want to analyse the influence of impulsive noise on alin & 107}

ear detector and compare its performance, i.e. BER, to tobu

detectors in non-Gaussian noise environments. We assume
Gaussian mixture noise pdf as presented in Section 3 in o 10°F ;

der to model impulsive noise. Simulation results are showi " Linear decorrelator

in Fig. 3. We observe that even for very small contamination ot :

—— M-estimator \
— +— - adaptive estimator v
n I n n

10°

-4 -2 0 2 4 6 8 10 12 14
5 SNRin dB

Fig. 4. SNR versus BER in Gaussian mixture noise with pa-
rameterg = 0.07 andx = 45

all three robust detector outperform the linear detectbohe
can notice that the parametric detector has a gaia 6fover
the M-estimator which is in accordance to Fig. 2.
For the next simulation we consider noise with parameter
e = 0.1 andx = 100 which lies at the edge of the (x)-
parameter space. Results are shown in Fig. 5. One can ob-
_ serve that the difference in performance among the proposed
L ive sctmator detectors increases significantly. For these particulaeno
% 2 0 2 4 6 8 10 12 1 parameters which represent the most impulsive noise paf, th
SR n a8 difference between the linear detector and the paramegric d
tector is more tha®dB. The parametric detector with
Fig. 3. SNR versus BER in Gaussian mixture noise with pa-bases gives an improvement4iB in performance over the
rameterg = 0.03 andx = 75 M-estimator. For simplification purposes we assume that the
computational cost of an addition and a multiplication is th
heree = 3%, the BER of the linear detector is significantly same. Then we can deduce that the computational complexity

—+— Linear decorrelator
one step M—estimator

107




—+— Linear decorrelator —+— Linear decorrelator
one step M—estimator one step M-estimator
—— M-estimator —— M-estimator
— «— - adaptive estimator — +— - adaptive estimator
I n n I n n

i i i i i 107

-4 -2 0 2 4 6 8 10 12 14 -4 -2 0 2 4 6 8 10 12 14
SNRin dB SNRin dB
Fig. 5. SNR versus BER in Gaussian mixture noise with pa- Fig. 6. SNR versus BER in Gaussian noise

rameterg = 0.1 andx = 100

non-linear detectors is that they need to have perfect knowl

is increased by a fact@r3-I,/I; whereB equals fourand,  edge of all the spreading sequences in order to decorrelate
can be assumed in the range between six and eight. Roughtlye signal. It would be desirable to design a robust detector
speaken, when considering the number of iterations, we camhich blindly decorrelates the spreading sequences and is i
say that the computational cost of the parametric detestor sensitive to impulsive noise. This approach will be consde
increased by factor 4 over Huber's M-estimator. in future work. Furthermore, an approach for modelling the
Now we are interested how the robust detectors do behaweore function, by estimating the noise pdf in a semiparamet
in Gaussian noise environments which is shown in Fig. 6ric way, is currently under investigation.
We note that there is no significant difference in perforneanc
of the four detectors. We can summarise that the soft-linite 8. REFERENCES
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