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ABSTRACT

In this paper we propose and evaluate different robust detec-
tors for a transmitter diversity scheme which can be used for
the downlink of a direct-sequence code division multiple ac-
cess (CDMA) system in impulsive noise environments. It
is well known that the performance of the linear detector is
severely degraded when impulsiveness occurs. The proposed
non-linear detectors are based on M-estimation and use non-
linear score functions. Simulation results show that they per-
form considerably better than the linear detector when im-
pulsive noise is present and do not loose much of their per-
formance in the Gaussian case. A comparison of the robust
detectors in terms of performance and complexity is provided.

1. INTRODUCTION

Diversity concepts are needed to cope with multipath fading
in wireless communications. The idea is to transmit the same
information several times over channels that fade indepen-
dently. Time and frequency diversity lead to lower data rates
and are therefore inconvenient in many applications. In [1],
Alamouti proposed a spatial diversity method with two trans-
mit and one receive antennae. This method ensures full data
rate while maintaining the same total transmit power that a
single-transmitter antenna would have used. This method has
been adopted in [2] for a CDMA system so as to improve
the quality of the downlink channel where the assumption of
Gaussian noise was made.
However, in reality, this assumption is not always true. In
particular, impulsive noise can occur in urban areas due to
switching transients in powerlines, automobile ignition,fluo-
rescent lighting and other electromagnetic interference sources
[3]. The presence of impulsive (i.e. non-Gaussian) noise
causes conventional techniques to have poor performance.
Hence, robust detectors are required whose performance is
near optimal in the Gaussian case and does not degrade sig-
nificantly if the underlying noise distribution changes. Inthis
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paper, we consider the transmitter diversity scheme proposed
in [2] when the underlying noise distribution is impulsive.We
suggest different robust detectors which are able to cope with
impulsive noise environments.
The paper is structured as follows: In Section 2, the sys-
tem model is explained and Section 3 introduces an impulsive
noise model. In Section 4, three different robust detectorsare
presented and their computational complexity is evaluatedin
Section 5 by means of theO-notation. Simulation results are
shown in Section 6 and conclusions are drawn in Section 7.

2. SYSTEM MODEL

We consider a system of two transmitter and one receiver an-
tennae [2]. At the transmitter we have the following signal
model for the signals transmitted from antennat1 andt2

t1 = 1/
√

2(b1c1 + b2c2)

t2 = 1/
√

2(b2c1 − b1c2). (1)

whereb1, b2 are the transmittedBinary Phase Shift Keying
(BPSK) symbols andc1, c2 are orthogonal spreading sequences
with unit norm and lengthN . We assume a Rayleigh fading
channel which is constant across two consecutive symbols.
The ith element of the received signal is

ri = h1t1i + h2t2i + ni, i = 1, . . . , N, (2)

whereh1 andh2 are the complex channel coefficients andni

is i.i.d. complex noise with probability density function (pdf)
fn(x). The signal model can be written in matrix form as

r = ASθc + n (3)

whereA is the transmit amplitude,S = [c1 c2] is the code
matrix andθc = Hb is to be estimated. In [2] it was claimed
that no extra spreading codes are required and the method
works with any orthogonal codes and thus we could gener-
ate a codec1 = [c; 0] andc2 = [0; c] which reduces the
complexity of the system.
To recoverθc one performs matched filtering or decorrelat-
ing where the received signal is correlated with the spreading



sequences.θc = STr. In order to demodulate the symbolsb1
andb2, the decorrelated signalθc = [θc1 θc2]

T is multiplied
by the hermitian of the channel matrixH = [h1 h2;−h2 h1]
where fullchannel state information(CSI) is assumed at the
receiver and only the real part is considered to recover the
BPSK symbols, i.e.b̂ = sgn(ℜ{H†θc}) [2]. If n has a
Gaussian pdf the estimates ofθc1 andθc2 obtained by a linear
decorrelator are optimal.
However, if the distribution ofn is not Gaussian but has im-
pulsive behaviour, the estimatesθ̂c1 andθ̂c2 are degraded sever-
ely and the BER increases.
We propose a robust non-linear detector, developed in [4],
for decorrelating the received space-time spreading (STS)se-
quences, i.e. to estimateθc1 andθc2 in a robust way. Stacking
the real and imaginary parts of the model of Equation (3) in
one vector, one obtains the extended system model

y = AΓθ + v. (4)

y =

(

ℜ{r}
ℑ{r}

)

Γ =

(

S 0

0 S

)

θ =

(

ℜ{θc}
ℑ{θc}

)

v =

(

ℜ{n}
ℑ{n}

)

(5)

and0 is aN × 2 matrix of zero elements. If we consider one
user with two orthogonal spreading codes the problem then
becomes one of solving

θ̂ = argmin
d

2N
∑

i=1

− log fn

(

yi −
2
∑

k′=1

(Γ)ik′θk′

)

. (6)

Note that, the system model may easily be extended to multi-
ple users by allowing the sum in brackets to range overk′ = 1
to 2M , whereM is the number of users. In this case, when
several user communicate at the same time, Equation (6) re-
quires the spreading sequences of the other users in order to
decorrelate the signal.
As in [2], we restrict ourselves to the one user case in order to
demonstrate the method. Assuming that the noise distribution
fn(x) has a single maximum we obtain a unique solution by
solving the following equation system

2N
∑

i=1

Γikϕ

(

yi −
2
∑

k′=1

(Γ)ik′θk′

)

= 0 k = 1, 2, (7)

whereϕ(x) = −∂ log fn(x)/∂x is the location score func-
tion which equalsx/σ2 in the Gaussian case and reduces
Equation (7) to least squares.θc is obtained fromθ by the
simple transformation

θc =

(

1 0 j 0
0 1 0 j

)

θ. (8)

3. IMPULSIVE NOISE MODEL

In [3] a canonical model based on measurements and statistical-
physical modelling was developed. Due to its complexity this
model is mathematically impractical. An approximation, the
ε-contaminated Gaussian mixture model, is used in this work
in order to simulate impulsive noise behaviour. The model
consists of two Gaussian components

fn(x) = (1 − ε)fG(x; 0, ν2) + εfG(x; 0, κν2). (9)

wherefG(x;µ, σ2) is a Gaussian pdf with meanµ and vari-
anceσ2. Typically values forε andκ are0.01 ≤ ε ≤ 0.1 and
10 ≤ κ ≤ 100 for wireless communication channels where
impulsive noise occurs [5]. Note that the variance of the sec-
ond term is significantly larger than that of the nominal first
term and hence leads to impulsive behaviour. The total noise
power is

σ2 = (1 − ε)ν2 + εκν2. (10)

We will study the impact of changes of the shape of the noise
distribution by varying the parameterε andκwhile the overall
variance is fixed to unity.

4. ROBUST APPROACHES

In Section 2, it was mentioned that outliers have a delete-
rious effect on the estimates. However, if one replaces the
Gaussian location score function by another influence func-
tion, this effect could be eliminated. Several parametric and
non-parametric approaches have been considered [7,8]. How
to choose the influence function is described in this section.

4.1. M-estimator and One-step M-estimator

Huber [4] proposed an estimator which minimises the maxi-
mum asymptotic variance of the least favourable noise distri-
bution over the class ofε-contaminated Gaussian mixture

ni ∼ (1 − ε)N (0, ν2) + εH (11)

where0 ≤ ε ≤ 1, N (0, ν2) is the Gaussian pdf with mean 0
and varianceν2 andH is any symmetric zero-mean pdf.
The influence function of this minimax estimator, also known
as the soft-limiter, can be expressed as [4]

ψ(x) =

{

x

ν2 |x| ≤ kν2

ksign(x) |x| > kν2 (12)

wherek, ε andν are connected through

Φ(kν)

kν
−Q(kν) =

ε

2(1 − ε)
, (13)

Φ(x) = 1√
2π
e−

x
2

2 andQ(t) = 1√
2π

∞
∫

t

e−
x
2

2 dx. In practiceε

andκ are not known. For this reason the influence function



of Equation (12) was approximated in [5] as

ψ(x) =

{

x

σ2 |x| ≤ kσ2

ksign(x) |x| > kσ2 (14)

wherek = 1.5/σ. Note thatσ2 is the overall variance of
the noise distribution andν2 is the variance of the nominal
distribution.
The estimation procedure for determiningθ in a robust way
is as follows First, obtain an initial estimateθi using linear
decorrelation and determine the residuals. Second, perform
one iteration step of a Newton-Raphson algorithm in order to
find the next estimateθi+1. This is repeated until convergence
is reached, i.e.

zi = ψ(y − Γθi)

θi+1 = θi + µ(ΓTΓ)−1ΓTzi, i = 0, 1, .. (15)

whereµ = 1/σ2 is a step size parameter. The algorithm stops
when|θ̂i+1 − θ̂i| > ǫ · |θ̂i+1| whereǫ ∈ R is a small number.
Note that the pseudoinverse(ΓTΓ)−1ΓT can be computed of-
fline.
Many other influence functionsψ(x) may be suggested, for
exampletanh(x/σ) which is a smoothed version of the soft-
limiter.
Another possibility is to apply only one step of the Newton-
Raphson algorithm. This does not necessarily lead to best
results but still provides robustness while maintaining com-
putational complexity on a low level. This is known as the
one-step M-estimator.

4.2. Parametric Estimator

In the previous subsection, an M-estimator used for estimat-
ing θ with a static influence function was described. This
M-estimator, like any minimax estimator, may be far from
optimal, away from the least favorable distribution. In order
to provide more flexibility to the underlying noise distribu-
tion, we consider an adaptive M-estimator, developed in [6,7],
which uses an adaptive influence function constructed from a
linear combinations ofB basis functions

ψ(x) =

B
∑

b=1

abgb(x) = aTg(x). (16)

The basis functionsg1(x), .., gB(x) are contained in the vec-
tor g(x) anda contains the corresponding coefficients. The
bases have to be chosen in such a way that they provide a
good approximation ofϕ.
The criterion used for estimating the coefficientsa is to min-
imise the mean square error between the modelψ(x) and the
true score functionϕ(x), i.e.,

â = arg min
a

E
[

(ψ(x) − ϕ(x))2
]

. (17)
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1. Initialisation
Set i=0. Obtain an initial estimate ofθ0

2. Determine the residuals

v̂ = r − Γθ̂
i

3. Estimate the weightsa and
construct the influence function
â = E[g(v̂)g(v̂)T]−1E[g′(v̂)]
ψ(x) = âTg(x)

4. Update the parameter estimates
zi = ψ(v̂)
θi+1 = θi + µ(ΓTΓ)−1ΓTzi

whereµ = 1/max(|ψ′(v̂)|)

5. Check for convergence

If | θ̂i+1−θ̂
i

θ̂i+1
| > ǫ, stop, whereǫ ∈ R

is a small number.
otherwisei→ i+ 1 and go to step 2,

Under certain conditions one obtains the optimal least squares
solution as [6]

â = E[g(x)g(x)T]−1E[g′(x)] (18)

whereE[·] is the sample mean in practice. In [7] it has been
shown that the small sample performance of this estimator is
improved when the constraints

∑B

b=1
ab = 1 andab ≥ 0

are met. The first constraint controls the scale while the sec-
ond constraint ensures the estimated influence function is an-
tisymmetric and positive forx > 0.
The asymptotic variance of this estimator forN → ∞ is
given by [7]

V (F, ϕ) =
aTE[ggT]a

(aTE[ġ])2
. (19)

However, if ones applies this estimator to the received signal
considered in Section 2 the following steps have to be per-
formed. The algorithm is similar to Equation (15) with the
difference that an estimate of the score function replaced by
the influence function.

4.2.1. Choice of basis function

It is clear that the more bases included in the setB the better
the asymptotic performance (N → ∞) of the estimator. On
the other hand, for small samples, the more bases the more
parameter to estimate and hence the more uncertainty in the
estimation procedure. In addition to that the complexity of
the algorithm increases by increasing the number of bases.



Hence, a tradeoff between performance and complexity has
to be achieved. In Section 3, we introduced the Gaussian
mixture pdf as a common model in wireless communications
where impulsive noise occurs.
Without loss of generality, the basis set used here,
B = {g1, g2, g3, g4}, consists of four Gaussian mixture score
functions with parameters (ε, κ) of (0.01, 10),
(0.1, 50), (0.02, 100) and(0.1, 100) respectively. Each is stan-
dardised to a distribution with unit variance. These four bases
are positioned in the(ε, κ) parameter space in order to cover
the parameter values expected in practice.
The choice becomes apparent if one considers the asymptotic
efficiency of the adaptive algorithm as shown in Fig. 1. Using
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Fig. 1. Asymptotic efficiency of the adaptive algorithm.

the basis setB defined above, the asymptotic efficiency of the
adaptive estimator is over 0.98 for practically relevant values
of (ε, κ).
Furthermore, the advantage of such a scheme over Huber’s
minimax M-estimator is seen in Fig. 2 which shows the asymp-
totic relative efficiency of Huber’s approach to that of the
adaptive algorithm. The adaptive algorithm has lower asymp-
totic variance over{0.01 ≤ ε ≤ 0.1 10 ≤ κ ≤ 100}. In
heavily contaminated noise environments the adaptive algo-
rithm is seen to perform significantly better.

5. COMPUTATIONAL COMPLEXITY

If we evaluate the algorithms proposed in Section 4 in terms
of computational complexity we have to consider three cost
factors. The first factor is the cost of computing the pseu-
doinverse(ΓTΓ)−1ΓT which can be done offline and is the
same for the three different algorithms. The second factor
is the cost of one iteration which appears only once for the
one-step M-estimator. However, for the M-estimator and the
adaptive algorithm, the iteration steps are performed an un-
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Fig. 2. Asymptotic relative efficiency of Huber’s minimax
M-estimator to that of the adaptive algorithm.

certain number of times and cannot be predicted beforehand
because they strongly depend on the particular channel and
noise environment. For the adaptive algorithm the weights of
the basis functions have to be estimated for constructing the
influence function, where matrix inversion is required.
In order to evaluate the computational complexity of the dif-
ferent algorithms we count the number of basic additions and
multiplications, i.e.O(R + R) andO(R · R). Each mathe-
matical operation may be reduced to basic calculations, e.g.
O(CN×2 ·R2×N ) = 4N ·O(R·R)+N ·O(R+R). For the two
M-estimators with static influence function the complexityof
evaluating the functionψ(v̂) is negligible. For the paramet-
ric detector the complexity strongly depends on the choice of
bases. In order to obtain a general and fair comparison which
is valid for any set of bases we neglect the complexity of eval-
uatingψ(v̂) for all three detectors.
The computation of the pseudoinverse takes2NM2O(R·R)+
M(N(M − 1) +M(N − 1))O(R + R) +O(M3) iterations.
After several simplifications one obtains the expressions in
Table 1.
B is the number of bases andI1, I2 are the number of iter-
ations until convergence is reached. To summarise we can
say that the one-step M-estimator has a complexity which is
proportional toMN while the complexity of the other two
estimators is proportional toI1MN andI2MN respectively.
In general, it takes four to five iterations until convergence is
reached for the M-estimator whereas the parametric detector
needs seven to eight iterations until it converges. This is due
to the fact that the influence function has to be estimated.

6. SIMULATIONS

We compare the linear decorrelator, the one-step M-estimator,
the M-estimator, a smoothed version of the M-estimator with



O(R + R) O(R · R) O(B3)

one-step M-estimator 4M(2N + 1) 16MN + 4M + 2N −
M-estimator I1 · 4M(2N + 1) I1 · (16MN + 4M + 2N) −
parametric detector I2[B(1 +B(N + 1)) + 4M(2N + 1)] I2[N(B2 + 1) − 2 + (16MN + 4M + 2N)] I2

Table 1. Comparison of the robust algorithms in terms of computational complexity

the influence functionψ(x) = tanh(x/σ) and the paramet-
ric adaptive estimator for different noise distributions.It was
found out that there is hardly a difference in performance
between the soft-limiter and thetanh(x) influence function
used for the M-estimator. For this reason only the curves for
the M-estimator are plotted in the figures. The channel is as-
sumed as Rayleigh fading with parameterr = 1/

√
2 and we

consider Hadamard codes for the spreading sequences with
lengthN = 128. TheBit-error-rate (BER) is calculated over
10000 MC simulations. Simulations with different orthog-
onal codes, mentioned in Section 2, showed no significant
difference in performance. TheSignal-to-noise-ratio(SNR)
is defined as the power of the received signal divided by the
noise power before decorrelation of the spreading sequences
is applied, i.e.

SNR =
A2(|h1|2 + |h2|2)

σ2
(20)

We want to analyse the influence of impulsive noise on a lin-
ear detector and compare its performance, i.e. BER, to robust
detectors in non-Gaussian noise environments. We assume a
Gaussian mixture noise pdf as presented in Section 3 in or-
der to model impulsive noise. Simulation results are shown
in Fig. 3. We observe that even for very small contamination,
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Fig. 3. SNR versus BER in Gaussian mixture noise with pa-
rametersε = 0.03 andκ = 75

hereε = 3%, the BER of the linear detector is significantly

higher than the BER of the other non-linear detectors. We ob-
serve that the one-step M-estimator gains about3dB in per-
formance against the linear detector while we gain again2dB
when considering the parametric estimator and M-estimator
which almost have the same performance. This is due to the
fact that for this particular value ofε andκ, both estimators
have the same efficiency which can be verified in Fig. 2.
However, when we consider a more impulsive noise environ-
ment, i.e. we increase the percentage of contamination, we
obtain a slightly different result. In Fig. 4 simulations are
shown for the noise parametersε = 0.07 andκ = 45. Again,
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Fig. 4. SNR versus BER in Gaussian mixture noise with pa-
rametersε = 0.07 andκ = 45

all three robust detector outperform the linear detector but one
can notice that the parametric detector has a gain of2dB over
the M-estimator which is in accordance to Fig. 2.
For the next simulation we consider noise with parameter
ε = 0.1 andκ = 100 which lies at the edge of the (ε, κ)-
parameter space. Results are shown in Fig. 5. One can ob-
serve that the difference in performance among the proposed
detectors increases significantly. For these particular noise
parameters which represent the most impulsive noise pdf, the
difference between the linear detector and the parametric de-
tector is more than8dB. The parametric detector withB
bases gives an improvement of4dB in performance over the
M-estimator. For simplification purposes we assume that the
computational cost of an addition and a multiplication is the
same. Then we can deduce that the computational complexity
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Fig. 5. SNR versus BER in Gaussian mixture noise with pa-
rametersε = 0.1 andκ = 100

is increased by a factor2.3 ·I2/I1 whereB equals four andI2
can be assumed in the range between six and eight. Roughly
speaken, when considering the number of iterations, we can
say that the computational cost of the parametric detector is
increased by factor 4 over Huber’s M-estimator.
Now we are interested how the robust detectors do behave
in Gaussian noise environments which is shown in Fig. 6.
We note that there is no significant difference in performance
of the four detectors. We can summarise that the soft-limiter,
with one or several iteration steps, has approximately the same
performance as the linear decorrelator in the Gaussian noise
environment and significantly outperforms the linear decorre-
lator in impulsive noise environments. Hence, in the Gaus-
sian case there is a negligible loss in performance but when
impulsive noise is present we have a large increase in perfor-
mance. The same is true for the parametric detector with the
addition that it significantly gains performance if the noise be-
haviour becomes more impulsive considering apriori knowl-
edge about the noise model.
However, if we compare the four different detectors with each
other, one can see that the more sophisticated the detectorsthe
better the performance due to a significant increase in compu-
tational complexity.

7. CONCLUSIONS

In a transmitter diversity scheme three robust detectors have
been applied in order to improve the performance in impulsive
noise environments. It was shown that each of the detectors
significantly outperforms the linear detector in these environ-
ments and the performance loss of the non-linear detectors
in Gaussian noise environments is negligible A complexity
analysis of the detector has been provided in order to trade-
off complexity versus performance. The disadvantage of the
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Fig. 6. SNR versus BER in Gaussian noise

non-linear detectors is that they need to have perfect knowl-
edge of all the spreading sequences in order to decorrelate
the signal. It would be desirable to design a robust detector
which blindly decorrelates the spreading sequences and is in-
sensitive to impulsive noise. This approach will be considered
in future work. Furthermore, an approach for modelling the
score function, by estimating the noise pdf in a semiparamet-
ric way, is currently under investigation.
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