Cubature Filters: New Generation of Nonlinear Filters that will Impact the Literature

Simon Haykin
McMaster, University
Hamilton, Ontario, Canada

email: haykin@mcmaster.ca
Web site: http://soma.mcmaster.ca
Outline of The Lecture

1. Introductory Remarks
2. The Bayesian Filter
3. Two Approaches for Approximating the Bayesian Filter
4. The Cubature Kalman Filter
5. Unique Properties of the Cubature Kalman Filter
6. Cubature Filtering for Continuous-Discrete nonlinear Systems
7. Applications of Cubature Filters
8. Example I: Tracking a Manoeuvring ship
9. Example II: Training a Recurrent Neural Network
10. Concluding Remarks
1. Introductory Remarks

“Optimality versus Robustness”

In many algorithmic applications, global optimality may not be practically feasible:

(i) Naturally infeasible computability
(ii) Curse-of-dimensionality due to large-scale nature of the problem at hand

Hence, the practical requirement of having to settle for a sub-optimal solution of the system design, which involves:

Trade-off between two conflicting design objectives:
- global optimality
- computational tractability and robust behaviour
Criterion for sub-optimality

DO AS BEST AS YOU CAN, AND NOT MORE

• This statement is the essence of what the human brain does on a daily basis:

 Provide the “best” solution in the most reliable fashion for the task at hand, given limited resources.

• Key question: How do we define “best”?

Naturally, the answer to this question is problem-dependent.
2. The Bayesian Filter (Ho and Lee, 1964)

Problem statement:

Given a nonlinear dynamic system, estimate the *hidden state* of the system in a *recursive* manner by processing a sequence of *noisy observations* dependent on the state.

- The Bayesian filter provides a *unifying framework* for the optimal solution of this problem, at least in conceptual sense.

Unfortunately, except in a few special cases, the Bayesian filter is *not* implementable in practice -- hence, the need for some form of *approximation*.
State-space Model of a Nonlinear Dynamic System:

1. Process (state) sub-model defined by the nonlinear equation:
 \[x_{t+1} = a(x_t) + \omega_t \]
 \(t \) = discrete time
 \(x_t \) = hidden state of the system at time \(t \)
 \(\omega_t \) = dynamic noise

2. Measurement sub-model defined by another nonlinear equation:
 \[y_t = b(x_t) + \nu_t \]
 \(y_t \) = observation at time \(t \)
 \(\nu_t \) = measurement noise
Prior Assumptions:

- **Nonlinear functions** $a(\cdot)$ and $b(\cdot)$ are known

- **Dynamic noise** ω_t and measurement noise ν_t are statistically independent Gaussian processes of zero mean and known covariance matrices.
Two fundamental Update Equations

1. The time-update equation:

\[
p(x_t | Y_{t-1}) = \int_{R^n} p(x_t | x_{t-1}) p(x_{t-1} | Y_{t-1}) \, dx_{t-1}
\]

where \(R^n \) denotes the \(n \)-dimensional state space.

The \(Y_{t-1} \) denotes the past history of the observations:

\[
Y_{t-1} = \{ y_{t-1}, \ldots, y_1 \}
\]
2. The measurement-update equation:

\[
p(x_t|Y_t) = \frac{1}{Z_t} \frac{p(x_t|Y_{t-1})l(y_t|x_t)}{p(x_t|Y_{t-1})}
\]

\[\text{Updated posterior distribution} \quad \text{Predictive distribution} \quad \text{Likelihood function}\]

where \(Z_t\) is the normalizing constant defined by

\[
Z_t = \int_{\mathbb{R}^n} p(x_t|Y_{t-1})l(y_t|x_t)dx_t
\]
Special Cases of the Bayesian Filter

• The celebrated **Kalman filter** is a special case of the Bayesian filter, assuming that the dynamic system is linear and both the dynamic noise and measurement noise are statistically independent Gaussian processes.

• Except for this special case and couple of other cases, exact computation of the posterior distribution \(p(x_t | Y_t) \), defined in Eq. (3) is **not** feasible; the same remark applies to the normalizing constant.

• We therefore have to abandon optimality and be content with a **sub-optimal nonlinear filtering algorithm** that is computationally tractable.
3. Two Approaches for Approximating the Bayesian Filter

1. Direct numerical approximation of the posterior in a local sense:
 - Extended Kalman filter (simple and therefore widely used) when the nonlinearity is of a mild sort
 - Unscented Kalman filter (heuristic in its formulation)
 - Central-difference Kalman filter
 - Cubature Kalman filter (New)

2. Indirect numerical approximation of the posterior in a global sense:
 Particle filters, whose
 - roots are embedded in Monte Carlo simulation; and
 - typically, they are computationally demanding
4. The Cubature Kalman Filter

- At the heart of the Bayesian filter, we have to compute moment integrals whose integrands are expressed in the common form

\[(\text{Nonlinear function}) \times (\text{Gaussian function})\]

- The challenge is to numerically approximate the integral so as to completely preserve second-order information about the state \(x_t\) that is contained in the sequence of observations denoted by \(Y_t\)

- The computational tool that accommodates this requirement is the cubature rule.
The Cubature Rule

- In mathematical terms, we have to compute integrals of the generic form

\[h(f) = \int_{\mathbb{R}^n} f(x) \exp\left(-\frac{1}{2} x^T x\right) dx \quad (5) \]

- To do the computation, a key step is to make a change of variables from the Cartesian coordinate system (in which the vector \(x \) is defined) to a spherical-radial coordinate system:

\[x = rz \text{ subject to } z^T z = 1 \text{ and } x^T x = r^2 \text{ where } 0 \leq r < \infty \]

- The next step is to apply the radial rule using the Gaussian quadrature.
Reference I:

For mathematical derivation of the Cubature Kalman filter, refer to the paper:

I. Arasartnam and S. Haykin
“Cubature Kalman Filters”
IEEE Transactions on Automatic Control, vol. 54, June 2009
5. Unique Properties of the Cubature Kalman Filter

Property 1: The cubature Kalman filter (CKF) is a *derivative-free on-line sequential-state estimator*; unlike other nonlinear filters, it relies on integration for its operation.

Property 2: Approximations of the four moment integrals involved in the derivation are all *linear* in the number of function evaluations.

Property 3: Computational complexity of the cubature Kalman filter grows as n^3, where n is the dimensionality of the state space.

Property 4: The cubature Kalman filter *completely preserves second-order information about the state* that is contained in the observations.
Property 5: Regularization is built into the constitution of the cubature Kalman filter by virtue of the fact that the prior is known to play a role equivalent to regularization.

Property 6: The cubature Kalman filter inherits properties of the linear Kalman filter, including square-root filtering for improved accuracy and reliability.

Property 7: The cubature Kalman filter is the closest known direct approximation to the Bayesian filter, outperforming all other nonlinear filters in a Gaussian environment:

It eases the curse-of-dimensionality problem but, by itself, does not overcome it.
6. Cubature Filtering for Continuous-Discrete Nonlinear Systems

This second class of nonlinear filters deals with state-estimation problems whose state-space models are naturally hybridized:

(i) Continuous-time state (process) sub-model.

(ii) Discrete-time measurement sub-model.

In mathematical terms, the measurement sub-model is described in the same way as in Eq. (2), but the state sub-model is different.
State (process) Sub-model

To describe the process sub-model, we have to resort to stochastic differential-equation theory, exemplified by the Ito equation:

\[
\frac{dx_t}{dt} = a(x, t) + \sqrt{Q}w_t
\] \(6\)

where \(x_t\) is the unknown state at time \(t\),

\(a(x,t)\) is some unknown function

\(Q\) is the so-called diffusion matrix

\(w_t\) is the standard Gaussian noise
Discretization of the Process Equation

With recursive digital computation in mind, the process sub-model would have to be discretized in the time domain.

The discretization can be performed using:

(i) Numerical methods, exemplified by the Euler method or Runge-Kutta method.

(ii) The Ito-Taylor expansion of order 1.5.
Cost-Reduced Square-root CKF

Having performed the discretization, we find that by proceeding in the same way as before, the resulting square-root cubature Kalman filter (SCKF) is computationally expensive.

To overcome this practical difficulty, we have developed a new nonlinear filter, named the cost-reduced SCKF whose distinguishing feature is summarized as follows:

The modified time-update propagates a set of cubature points without having to estimate the predicted mean and covariance at every time-step of the filtering computation.
Reference II

For mathematical derivation of the cost-reduced square-root cubature Kalman filter, refer to

I. Arasaratnam, S. Haykin, and T. Hurd
“Cubature Filtering for Continuous-Discrete Nonlinear Systems: Theory with an Application to Tracking”

to be submitted for publication.
7. Practical Applications

(i) Aerospace Applications
 Tracking of aircraft, satellites and guided missiles.

(ii) Training of Recurrent Neural Networks

Simply stated:

The Cubature Kalman filter and its continuous-discrete extension provide new signal-processing tools for estimating the hidden state of a nonlinear dynamic system whose nonlinearity is too difficult for the traditional use of extended Kalman filters.
8. Example I: Tracking a Manoeuvring Ship

Problem statement:

Track a ship moving in an area bounded by a shore line, assumed to be a circular disc of known radius and centered at the origin.

- The ship’s motion is modelled by a constant velocity perturbed by additive white Gaussian noise.

- When the ship tries to drift outside the shoreline, a gentle turning force pushes it back towards the origin.

- The model is interesting in that it exhibits a nonlinear behavior near the shoreline, thereby providing a good test for assessing the performance of different nonlinear filters.
• Dynamic State-space Model (Kushner and Budhiraja, 2000)

\[
\dot{x}_t = [\dot{\xi}_t, \dot{\eta}_t, f_1(x_t), f_2(x_t)]^T + \sqrt{Q_t} \beta_t
\]
(7)

\[
\begin{pmatrix}
 r_k \\
 \theta_k
\end{pmatrix} = \begin{pmatrix}
 \sqrt{\xi_k^2 + \eta_k^2} \\
 -\frac{1}{\tan \left(\frac{\eta_k}{\xi_k} \right)} + w_k
\end{pmatrix}
\]
(8)

• where

\[
f_1(x) = \begin{cases}
 \frac{-K\xi}{\sqrt{\xi^2 + \eta^2}}, & \sqrt{\xi^2 + \eta^2} \geq r \text{ and } \xi \dot{\xi} + \eta \dot{\eta} \geq 0; \\
 0, & \text{otherwise}
\end{cases}
\]
(9)

\[
f_2(x) = \begin{cases}
 \frac{-K\eta}{\sqrt{\xi^2 + \eta^2}}, & \sqrt{\xi^2 + \eta^2} \geq r \text{ and } \xi \dot{\xi} + \eta \dot{\eta} \geq 0; \\
 0, & \text{otherwise}
\end{cases}
\]
(10)
Tracking Example (continued)

- Use the Euler method with 5 steps for each measurement interval to numerically integrate Eq. (7)

- Data:
 - Radius of the disk-shape shore, \(r = 5 \) units
 - Gaussian process noise intensity, \(Q = 0.01 \)
 - Gaussian measurement noise parameters, \(\sigma_r = 0.01 \) and \(\sigma_\theta = \frac{0.5\pi}{180} \)
 - Estimated initial state, \(\hat{x}_{0|0} = [1, 1, 1, 1]^T \) and covariance, \(P_{0|0} = 10I_4 \)
 where \(I_4 \) is four-dimensional identity matrix.
 - Radar scans = 1000/Monte Carlo run
 - 50 independent Monte Carlo runs
Motion of the ship.

Figure 1: I - initial point, F - final point, ★ - Radar location
Performance Comparison: RMSE in position

Figure 2: dashed red-Particle filter (PF) (1000 particles), thin blue-Central-difference Kalman filter (CDKF) dark black-Cubature Kalman filter (CKF)
Performance Comparison” RMSE in velocity

Figure 3: dashed red- PF (1000 particles), thin blue- CDKF, dark black- CKF
9. Example II: Training a Recurrent Neural Network

Mackey-Glass Attractor

\[\frac{dx_t}{dt} = bx_t + \frac{ax_{t-\Delta t}}{1 + x_{t-\Delta t}} \] \hspace{1cm} (11)

where \(t \) denotes continuous time,

\[a = 0.2 \]
\[b = 0.1 \]
\[\Delta t = 30 \]

The Mackey-Glass attractor has an infinite number of degrees of freedom because we require knowledge of the initial value of \(x_t \) across a continuous-time interval.

Yet, it behaves like a strange attractor with a finite dimension.
Figure 4: Ensemble-averaged cumulative absolute error curves during the autonomous prediction phase of dynamic reconstruction of the Mackey-Glass attractor.
10. Concluding Remarks

The classical Kalman filter (1960) and Kalman-Bucy filter (1961) provide optimal estimates of the hidden state of linear discrete-time and continuous-time systems in Gaussian environments, respectively, being optimal in the maximum a posterior (MAP) sense.

The two new nonlinear filters, the Cubature Kalman filter (and its square-root version) described in Reference I and the cost-reduced square-root cubature Kalman filter described in Reference II, provide optimal estimates of the hidden state of nonlinear discrete and continuous-discrete (hybrid) systems, respectively, being optimal in the sense that they are the closest direct approximations to the Bayesian filter in Gaussian environments.
The slides for this Webiner are available on my website

http://soma.mcmaster.ca