Shannon revisited: New separation principles for wireless multimedia

Prof. Mihaela van der Schaar
Multimedia Communications and Systems Lab
Electrical Engineering Department, UCLA
http://medianetlab.ee.ucla.edu/
UCLA Multimedia communications Lab

Delay-critical systems and networks
- Multimedia compression & proc
- Rigorous cross-layer design
- Mission-critical networks & systems
- Energy-efficient multimedia sys
- Real-time stream mining

Designs for networked communities
- New classes of games & learning
- Network economics
- Policing in networks and systems
- Design and incentives in Social Nets
Delay-critical networking and processing

Multimedia compression, processing and networking

Rigorous methods for cross-layer design (dynamic environments)

MPEG, Philips

NSF, Intel, HP, Microsoft

Delay-critical Networking and Online Learning

Real-time Stream Mining

NSF, ONR, Intel, Cisco

IBM, NSF
Goal: Designing Large-Scale Multimedia Mining Applications in Distributed Processing Environments [NSF, IBM]

Challenges:

• **High Volume of data**: faster than a database can handle

• **Complex Analytics**: correlation from multiple sources and/or signals; video, audio or other non-relational data types

• **Delay-critical**: responses required in a specified time

• **Other system requirements**:
 – Scalable to the number of flows
 – Resource variability
 – Failure Tolerance
 • Data cannot be stored and reprocessed
 • Requirements on graceful degradation under failure
 – Distributed computation by self-interested agents
Stream Computing: New Paradigm

Traditional Computing

Historical fact finding with data-at-rest
- Batch paradigm, pull model
- Query-driven: submits queries to static data
- Relies on Databases, Data Warehouses

Stream Computing

Real time analysis of data-in-motion

Streaming data
- Stream of structured or unstructured data-in-motion

Stream Computing
- Analytic operations on streaming data in real-time
Stream mining - Semantic concept detection

Smarter cities

Aerial Recon. Images

Input Stream

Dynamic Stream

Ground Recon. Images

Distributed, Real-time Stream Processing

Operating System and Transport

Hardware Configuration

Streams Middleware

Resource-Adaptive Analytic Placement, Optimization

Taxonomy

Urban

Gathering

Road

Convoy

Roadside Bomb

Flag-burning

Protest

Unknown

Bagging Models

Intelligence Analysts

Scenes and Activities

Aerial Recon. Images

Ground Recon. Images

Protest

Road

Convoy
Stream mining - Online Healthcare Monitoring

- Contextual Data Sources
 - Biometric Sensor Data
 - Distributed, Real-time Stream Processing

- Clinical, Insurance
 - Proactive Outbreak Detection
 - Trending Analysis
 - Clinical Decision

- Wellness, Citizen
 - Wellness Services
 - Third Party Consulting
 - Self Management

- Census, CDC
 - Realtime Health Census
Stream mining - Analysis for social networks

- Graph = nodes (people, e.g. bloggers) + links (interactions)
 - Each node includes a temporal sequence of ‘documents’ (blog posts, tweets, …)

1. Identify relevant content
 Now: keyword search

2a. Identify key influencers
 Now: page rank, SNA measures, …

2b. Characterize viral potential
 Now: use of follower statistics

3. Characterize objective vs subjective content
 Now: lexical and pattern-based models

4a. Topic evolution & emergence
 Now: word co-occurrence, clustering

4b. Classify new partially-observed documents
 Now: unsupervised clustering

Distributed, Real-time Stream Processing
Multi-disciplinary research effort

- Parallel and Grid Computing
 - High volume data stream processing
- Content-level routing, Topology formation and Event messaging
- Signal Processing
 - Real-time adaptive analytics
 - Stream data aggregation, filtering, compression, processing
 - Incremental learning
 - Cross-layer design
 - System and Analytics
- Distributed system designs for autonomous and self-interested agents
Information processing and economics

New Classes of Engineering Games
Network economics

Policing in networks (Intervention)
Design and Incentives in Networked Communities

NSF, IBM
Shannon revisited: New separation principles for wireless multimedia

• F. Fu and M. van der Schaar, "Structure-Aware Stochastic Control for Transmission Scheduling".

• F. Fu and M. van der Schaar, "Structural Solutions to Dynamic Scheduling for Multimedia Transmission in Unknown Wireless Environments".
Our research focus

• To develop a rigorous mathematical framework that enables us to analyze and design multi-user environments and applications, where autonomous users interfere with each other when sharing a common set of resources.

• Aim: construct a new theory for architecting next-generation distributed networks and systems under informational and/or delay-constraints.

[NSF Career, 2004]
Networked multimedia apps are booming!

- Existing network environments provide limited support for delay-sensitive applications
- My research has been dedicated in the past 14 years to enabling efficient real-time multimedia communication
- **What’s new?**
 Development of a rigorous, unified framework for the optimal design and deployment of delay-sensitive multimedia communication
Challenges

Challenge 1: Unknown, dynamic environments

- Dynamic source and channel conditions
- Statistical knowledge of dynamics - unknown
Challenge 2: Multimedia traffic is highly heterogeneous

- Different delay deadlines, importance, and dependencies
Challenges

Original VIDEO

Packet-based Network

Source

Traffic

Transmitter

Encoder Buffer

Transmission Strategy

Receiver

Decoder Buffer

Receiving Strategy

Challenge 3: Multi-user coupling/interference (dynamic!)
Problem 1: Minimize average delay for *homogeneous traffic* in dynamic networks

Existing solutions – *Network control theory*

 - Queue is stable, but delay performance is suboptimal (for low delay apps)
 - Network environment is considered known – not true in practice!

Existing solutions – *Stochastic control theory*

- Markov decision process (MDP) formulation [Berry 2002, Borkar 2007, Krishnamurthy 2006]
 - Statistic knowledge of the underlying dynamics is required
- Online learning [Krishnamurthy 2007, Borkar 2008]
 - Slow convergence and large memory requirement
Problem 2: Maximize quality of delay-sensitive applications with *heterogeneous traffic*

Existing solutions - *Multimedia communication and networking*

- Joint source and channel coding, scheduling, prioritization etc.
- Rate distortion optimization (RaDiO) [Chou, 2001, Frossard 2006, Girod 2006, Ortega 2009]

- **Limitations**
 - Myopic optimization
 - Only explores heterogeneity of the media data, but do not consider network dynamics and resource constraints
 - Only known environments considered
 - Linear transmission cost (e.g. not suitable for energy-optimization)
 - No systematic solutions available - problem seemed too hard?
Problem 3: *Multi-user* transmission sharing of network resources

Existing solutions - *Network optimization theory*

- Network utility maximization (NUM) [Chiang 2007, Katsaggelos 2008]
 - Uses static utility function without considering the network dynamics
 - No delay guarantees
 - No learning ability in unknown environments

Existing solutions – *Network control theory*

 - Queue is stable, but delay performance is suboptimal (for low-delay apps)
 - Does not consider heterogeneous media data
What can we learn from Shannon about how to address these challenges?

Shannon’s separation principle:
- Source code with minimal rate to satisfy desired source distortion
- Channel code with minimal rate to reduce channel errors

Despite separate design of source and channel codecs, optimality is achieved!
Separation principles

Shannon’s separation principle is not useful for delay-critical communication designs, because it is valid only for:

- Stationary source and channel
- Unlimited delay (arbitrary long block codes)
- Point-to-point communication systems

However, the idea of “separation principles” will become useful if we can separate at the right places!
Thus: new separation principles are needed!

This work:
- develops designs that separate into the “right” sub-problems
- efficiently solves the separated sub-problems
<table>
<thead>
<tr>
<th>Challenges</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic system</td>
<td>Stochastic control</td>
</tr>
<tr>
<td>Unknown dynamics</td>
<td>Online learning</td>
</tr>
<tr>
<td>Learning efficiency</td>
<td>Separation principles</td>
</tr>
<tr>
<td>Heterogeneity</td>
<td></td>
</tr>
<tr>
<td>Multi-user coupling</td>
<td></td>
</tr>
</tbody>
</table>
Key results

<table>
<thead>
<tr>
<th>Previous state-of-art methods</th>
<th>Our improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy-efficient data transmission*</td>
<td>Stability constrained optimization [Neely 2006]</td>
</tr>
<tr>
<td>Wireless video transmission</td>
<td>Rate-distortion optimization [Chou 2001]</td>
</tr>
<tr>
<td>Multi-user video transmission</td>
<td>Network utility maximization [Chiang 2007]</td>
</tr>
</tbody>
</table>

*minimize the average delay
Roadmap

- **Separation principle 1**: separate the foresighted decision problem from the computation of unknown dynamics

- **Separation principle 2**: separate the foresighted decision problems across data packets

- **Separation principle 3**: separate the foresighted decision problems across users
Energy-efficient data transmission

- Point-to-point time-slotted communication system
- System variables
 - Backlog (queue length): x_t
 - Channel state: h_t Finite state Markov chain
 - Data arrival process: a_t: i.i.d.
- Decision at each time slot
 - Amount of data to transmit (transmission rate): y_t, $0 \leq y_t \leq x_t$
- Energy consumption: $\rho(h_t, y_t)$, convex in y_t, e.g. $\rho_t(h_t, y_t) = \sigma^2 \frac{2^y - 1}{h_t}$.

Assumption 1: $u(x, y)$ is bounded, supermodular and jointly concave in x, y;
Assumption 2: $\rho(h, y)$ is increasing and convex in y for any given $h \in \mathcal{H}$.
Foresighted optimization formulation

- Why we need foresighted optimization?
- Markov Decision Processes (MDP)
- Online learning

\[
\max_y \{ u(s, y) \} + \mathbb{E}_w V(f(s, y, w))
\]

Current utility

State-value function

Queue length
Channel condition
Heterogeneity

State: \(s \)

Action: \(y \)

State: \(s' = f(s, y, w) \)

Current time slot
Next time slot

Dynamics: \(w \)
Foresighted optimization formulation

- Foresighted optimization (MDP) formulation
 - State: \((x_t, h_t) \)
 - Action: \(y_t \)
 - Policy: \(\pi: (x_t, h_t) \rightarrow y_t \)
 - Utility function: \(u(x_t, h_t, y_t) = -(x_t - y_t + \lambda \rho(h_t, y_t)) \).

- Objective (optimize delay and energy consumption tradeoff)

\[
V(x_t, h_t) = \max_\pi \mathbb{E} \sum_{k=t}^{\infty} \alpha^{(k-t)} \{ u(x_k, h_k, \pi(x_k, h_k)) \}
\]

\(\alpha \in [0, 1) \) is discount factor.

- If dynamics are known – solution for Bellman’s equations is known
 - Policy iteration, value iteration
Challenges for solving the foresighted optimization

Bellman’s equation:

\[
V(x, h) = \max_{\pi} \{ u(x, h, \pi(x, h)) + \alpha \mathbb{E}_{a, h'} | h V(x - \pi(x, h) + a, h') \}
\]

- Statistical knowledge of the underlying dynamics - **unknown**
 - Unknown traffic characteristics
 - Unknown channel (network) dynamics
- Coupling between the maximization and expectation
Exploit nature of foresighted decision - Separation Principle 1

Post-decision state separates foresighted decision from dynamics.

State-value function

\[V(x_t, h_t) \]

Decision \(y_t \)

Exogenous dynamics

\[V(x_t, h_t) \xleftarrow{\text{Foresighted decision}} U(\tilde{x}_t, h_t) \xrightarrow{\text{Post-decision state-value function}} V(x_{t+1}, h_{t+1}) \]

Foresighted decision

\[V(x, h) = \max_y \{ u(x, h, y) + \alpha U(x - y, h) \} \]

Expectation over dynamics

\[U(x, h) = \mathbb{E}_{a, h' | h} V(x + a, h') \]

Post-decision state separates foresighted decision from dynamics.
Online learning – using Separation Principle 1

\[U(x, h) = \mathbb{E}_{a, h' \mid h} V(x + a, h') \]

\[V(x, h) = \max_y \{ u(x, h, y) + \alpha U(x - y, h) \} \]

- Online adaptation

\[U_t(x, h_{t-1}) = (1 - \beta_t) U_{t-1}(x, h_{t-1}) + \beta_t V_t(x, h_t) \quad \text{e.g. } \beta_t = 1/t \]

Online update \quad Time-average

\[\pi, V \quad U \]

Foresighted decision

\[V_t(x, h_t) = \max_{y \in \mathcal{Y}} \{ u(x, h_t, y) + \alpha U_{t-1}(x - y, h_t) \} \]

Theorem:
Online adaptation converges to the optimal solution when \(t \to \infty \)

Expectation is independent of backlog \(x \to \text{batch update} \) (fast convergence).

Batch update incurs high complexity. Curse of dimensionality 😞
Structural properties of optimal solution

\[
U(x, h) = \mathbb{E}_{a, h' \mid h} V(x + a, h')
\]
\[
V(x, h) = \max_y \{ u(x, h, y) + \alpha U(x - y, h) \}
\]

- Structural properties of optimal solution
 - Assumption: \(u(x, h, y) \) is jointly concave and supermodular* in \((x, y)\).

\[\pi(x, h) \text{ is monotonic in } x \]
\[\pi, V \]
\[U \]
\[U(x, h) \text{ is concave in } x \]

Foresighted decision

How can we utilize these structural properties in online learning?

\[u(x', h, y') - u(x', h, y) \geq u(x, h, y') - u(x, h, y) \text{ if } x' \geq x, y' \geq y\]
For each channel state h, we approximate the post-decision state-value function such that the worst-case performance degradation is bounded and performance-complexity tradeoffs can be easily performed.
Online learning with adaptive approximation

\[\hat{U}_t(x, h_{t-1}) = A_\delta (1 - \beta_t) \hat{U}_{t-1}(x, h_{t-1}) + \beta_t V_t(x, h_t) \]

\[V_t(x, h_t) = \max_{y \in \mathcal{Y}} \{ u(x, h_t, y) + \alpha \hat{U}_{t-1}(x - y, h_t) \} \]

Theorem: Online learning with adaptive approximation converges to an \(\varepsilon \)-optimal solution, where \(\varepsilon = \frac{\delta}{1 - \alpha} \)

Variant: Update \(U(x, h) \) and \(\pi(x, h) \) every \(T \) time slots
Performance of learning with approximation

Rayleigh fading channel
Average channel gain $\frac{h^2}{\sigma^2} = 0.14$
$\#channel\ state=8$
$\alpha = 0.95$
Comparison with stability-constrained optimization

 - Objective - trade-off between Lyapunov drift and energy consumption
 \[
 \min \lambda \rho(h_t, y_t) + (x_t - y_t)^2 - x_t^2
 \]
 Lyapunov drift

 \[
 \begin{array}{ll}
 \text{Utility function} & u(x_t, h_t, y_t) \\
 \text{Post-decision state value function} & U(x_t - y_t, h_t)
 \end{array}
 \]

 - Does not consider the channel state transition and the transmission cost
 - Does not consider the effect of the utility function on post-decision state value function
 - Only ensures queue stability, but results in poor delay performance
Comparison with stability-constrained optimization

Stability constrained optimization
Minimize Lyapunov drift \Rightarrow Minimize delay

Our proposed solution
Minimize queue size $=$ Minimize delay
Comparison to Q-learning

- Q-learning: learn directly state-value function (no separation applied)
- Online learning based on Separation Principle 1
Roadmap

• Separation principle 1 – separation of foresighted decision and computation of unknown dynamics

• Separation principle 2 – separation of foresighted decision across data packets for heterogeneous multimedia

• Separation principle 3 – separation of foresighted decision across users for multi-user communication
Heterogeneous media data

Media data representation:

- Each DU has the following attributes:
 - Arrival time: time at which the DU is ready for processing: t_i
 - Delay deadline: d_i
 - Size: L_i
 - Distortion impact: q_i per packet
- Interdependency between DUs: *Augmented Directed Acyclic Graph (A-DAG)*

- Utility function: video quality (PSNR) vs. energy tradeoff
Context

- Context \((c_t)\) at each time slot \(t\)
 - Include the DUs whose deadlines are within a time window \(W\)
 e.g. \(W = 3\)
Foresighted optimization

State: \((c_t, x_t, h_t) \) \(x_t = (x^2_t, x^3_t, x^4_t, x^5_t) \)

- Multi-DU Foresighted decision

\[
\begin{align*}
\max_{y_t, i \in c_t} \{ u(c_t, x_t, h_t, y_t) + \alpha U(c_t, x_t - y_t, h_t) \} \\
\text{Current utility} & \quad \text{Post-decision state-value function}
\end{align*}
\]

where \(u(c_t, x_t, h_t, y_t) = -\sum_{i \in c_t} q_i y_i - \lambda \rho(h_t, \sum_{i \in c_t} y_i) \)

- Which DU should be transmitted first?
- How much data should be transmitted for each DU?
Priority-based scheduling

- Prioritization
 - Based on distortion impacts, delay deadlines and dependencies
Separation principle 2:
Separate foresighted decision across DUs

- Theorems
 - If there is only one DU with the highest priority, it is optimal to transmit the data in this DU by solving the foresighted optimization.
 - If there are multiple DUs with the same priorities, it is optimal to first solve the foresighted optimization for each DU and transmit the data from the DU with highest long-term utility.

Single-DU foresighted decision:

\[V_t^i = \max_{y_t^i \in \mathcal{Y}(h_t)} \left\{ \tilde{u}_i(x_t, h_t, \sum_{j \triangleleft i} y_t^j, y_t^i) + \alpha U_i(c_t, x_t - y_t^i, h_t) \right\} \]

\[j \triangleleft i : \text{DU } j \text{ has higher priority than DU } i. \]

One dimensional concave function given \(c_t \) and \(h_t \).
It can be updated using the proposed online learning.

Multi-DU foresighted decision → Multiple single-DU foresighted decision
Separation principle 2: Separate foresighted decision across DUs

Multi-DU foresighted decision → Multiple single-DU foresighted decision
Simulation results for video transmission

- Dynamics of both source and channel considered (separation principle 2)
- Dynamics of only source considered
- No dynamics considered (myopic)

[Graph showing PSNR vs. consumed energy for different solutions]

Foreman
Roadmap

• Separation principle 1 – separation of foresighted decision and computation of unknown dynamics

• Separation principle 2 – separation of foresighted decision across data packets for heterogeneous multimedia

• Separation principle 3 – separation of foresighted decision across users for multi-user communication
Delay-sensitive multi-access communication

Goal: maximize sum of long-term utilities across all users

\[
\max_{y_t, \forall t} \mathbb{E} \sum_{t=0}^{\infty} \sum_{i=1}^{M} \alpha^t \sum_{i=1}^{M} u_i(x_t^i, h_t^i, y_t^i)
\]

s.t. \([y_t^1, \ldots, y_t^M] \in \Pi(h_t), \forall t \geq 0\)

Resource constraint
(e.g. transmission time constraint in TDMA)
Foresighted optimization formulation

- Formulate as Multi-user MDP (MUMDP) and perform foresighted decision

\[V(x_t, h_t) = \max_{y_t} \left\{ \sum_{i=1}^{M} u_i(x_i^t, h_i^t, y_i^t) + \alpha U(x_t - y_t, h_t) \right\} \]

Goal: decouple post-decision state value function across users
Separation Principle 3: Decomposition of post-decision state-value function

- Introduce scalar resource price λ, and compute post-decision state-value function $U(x_t, h_t; x_{t+1}, h_{t+1})$ individually, based on single-user MDP:
Separation Principle 3: Decomposition of post-decision state-value function

- Introduce scalar resource price λ, and compute post-decision state-value function $U_i^\lambda(x_t^i, h_t^i)$ individually, based on single-user MDP:
Multi-user resource allocation

- Resource allocation

\[
\max_{y_t \in \Pi(h_t)} \sum_{i=1}^{M} \left\{ u_i(x_t^i, h_t^i, y_t^i) + \alpha U_i(x_t^i - y_t^i, h_t^i) \right\}
\]

- Sub-gradient method to update resource price

Sub-gradient

User \(i \)

Network coordinator

Resource allocation

Current allocation

Future allocation

Resource price \(\lambda \)
Resource price update

- Subgradient method to update resource price

The resource price is updated by

$$\lambda_{k+1} = [\lambda_k + \beta_k \left(\sum_{i=1}^{M} Z^i - \frac{1}{1 - \alpha} \right)]^+$$

where Z^i is the expected consumed resource by user i and is individually computed by user i.

![Diagram showing network coordinator updating λ based on subgradient method with arrows between users and coordinator]
Relationship of our multi-user framework to existing methods

Longest Queue Highest Possible Rate (LQPHR) -
- Assign higher rate to longer queue to achieve optimal average delay
- Assume symmetric i.i.d. channels
Results for multi-user transmission

- Each user uses multiple queues to represent video data
- Markov chain model for Rayleigh fading channel
- TDMA-type channel access
Other applications developed in our lab based on the same framework

- **Cross-layer optimization** via layer separation
 - Each layer performs dynamic optimization individually
 - Message exchange across layers
- **Media-TCP:** Congestion control for real-time multimedia transmission
- **Energy-efficient multimedia processing**
- **Wireless video over cooperative, multi-hop and mission-critical networks**
- **Distributed, real-time multimedia data mining applications**
- **Scalable and reconfigurable video coding** – via layer separation

Thank you Claude!
Our research website:

http://medianetlab.ee.ucla.edu