Automatic Transcription:
An Enabling Technology for Music Analysis

Simon Dixon
simon.dixon@eeecs.qmul.ac.uk

Centre for Digital Music
School of Electronic Engineering and Computer Science
Queen Mary University of London
Semantic Audio

- Extraction of symbolic “meaning” from audio signals: How would a person describe the audio?
 - Solo violin, D minor, slow tempo, Baroque period
 - Bar 12 starts at 0:21.961
 - 2nd verse starts at 1:43.388
 - Quarter comma meantone temperament

- Annotation of audio
 - Onset detection
 - Beat tracking
 - Segmentation (structural, ...)
 - Instrument identification
 - Temperament and inharmonicity analysis
 - Automatic transcription

- Automatically generated annotations are stored as metadata
 - Matched against content-based queries
 - Also useful for navigation within a document
Automatic music transcription (AMT)

- Audio recording → Score
- **Applications:**
 - Music information retrieval
 - Interactive music systems
 - Musicological analysis
- **Subtasks:**
 - Pitch estimation
 - Onset/offset detection
 - Instrument identification
 - Rhythmic parsing
 - Pitch spelling
 - Typesetting
- Still remains an open problem
Core problem: **Multiple-F0 estimation**

Common time-frequency representations:
- Short-Time Fourier Transform
- Constant-Q Transform
- ERB Gammatone Filterbank

Common estimation techniques:
- Signal processing methods
- Statistical modelling methods
- NMF/PLCA
- Sparse coding
- Machine learning algorithms

HMMs commonly used for **note tracking**
Background (2)

- **mirex** evaluation:
 - Best results achieved by signal processing methods
- **Multiple-F0 estimation approaches rely on assumptions:**
 - Harmonicity
 - Power summation
 - Spectral smoothness
 - Constant spectral template
Design considerations:
- Time-frequency representation
- Iterative/joint estimation method
- Sequential/joint pitch tracking
Signal Processing Approach (ICASSP 2011)

- RTFI time-frequency representation
- Preprocessing: noise suppression, spectral whitening
- Onset detection: late fusion of spectral flux & pitch salience
- Pitch candidate combinations are evaluated, modelling tuning, inharmonicity, overlapping partials and temporal evolution
- HMM-based offset detection

(a) Ground-truth guitar excerpt
‘RWC MDB-J-2001 No. 9’

(b) Transcription output of the same recording
Background: Non-negative Matrix Factorisation (NMF)

- $X = WH$
 - X is the power (or magnitude) spectrogram
 - W is the spectral basis matrix (dictionary of atoms)
 - H is the atom activity matrix

- Solved by successive approximation
 - Minimise $\| X - WH \|$
 - Subject to constraints (e.g. non-negativity, sparsity, harmonicity)

- Elegant model, but ...
 - Not guaranteed to converge to a meaningful result
 - Difficult to extend / generalise
Probabilistic Latent Component Analysis (PLCA): probabilistic framework that is easy to generalize and interpret

PLCA algorithms have been used in the past for music transcription

Shift-invariant PLCA-based AMT system with multiple templates:

\[
P(\omega, t) = P(t) \sum_{p,s} P(\omega | s, p) \ast_\omega P(f | p, t) P(s | p, t) P(p | t)
\]

\(P(\omega, t)\) is the input log-frequency spectrogram,
\(P(t)\) the signal energy,
\(P(\omega | s, p)\) spectral templates for instrument \(s\) and pitch \(p\),
\(P(f | p, t)\) the pitch impulse distribution,
\(P(s | p, t)\) the instrument contribution for each pitch, and
\(P(p | t)\) the piano-roll transcription.
System is able to utilize sets of extracted pitch templates from various instruments (Figure: violin templates)
Figure: transcription of a Cretan lyra excerpt

Original: ♪♩♩♩♫

Transcription: ♪♩♩♩♫
Application 1: Characterisation of Musical Style

(Ref: Mearns, Benetos and Dixon, SMC 2011)

- Bach Chorales: audio and MIDI versions
- Audio transcribed and segmented by beats
- Each vertical slice is matched to chord templates based on Schoenberg’s definition of diatonic triads and 7ths for the major and minor modes
- HMM detects key and modulations
 - Observations are chord symbols, hidden states are keys
 - Observation matrix models relationships between chords and keys
 - State transition matrix models modulation behaviour
 - Various models based on Schoenberg and Krumhansl — comparison of models from music theory and music psychology

<table>
<thead>
<tr>
<th></th>
<th>Transcription</th>
<th>Chords</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>33% (100%)</td>
<td>56%</td>
<td>64%</td>
</tr>
<tr>
<td>MIDI</td>
<td>85%</td>
<td>65%</td>
<td></td>
</tr>
</tbody>
</table>
Application 2: Analysis of Harpsichord Temperament

(Ref: Tidhar et al. JNMR 2010; Dixon et al. JASA 2011, to appear)

- For fixed-pitch instruments, tuning systems are chosen which aim to maximise the consonance of common intervals
- Temperament is a compromise arising from the impossibility of satisfying all tuning constraints simultaneously
- We measure temperament to aid study of historical performance
 - Perform “conservative” transcription
 - Calculate precise frequencies of partials (CQIFFT)
 - Estimate fundamental and inharmonicity of each note
 - Classify temperament

<table>
<thead>
<tr>
<th></th>
<th>Synthesised</th>
<th>Acoustic (real)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Peaks</td>
<td>96%</td>
<td>79%</td>
</tr>
<tr>
<td>Conservative Transcription</td>
<td>100%</td>
<td>92%</td>
</tr>
</tbody>
</table>
Application 3: Analysis of Cello Timbre

(Ref: Chudy, Benetos and Dixon, work in progress)

- Expert human listeners can recognise the “sound” of a performer
 - Not just the recording
 - Not just the instrument

- Can this be captured in standard timbral features?
 - Temporal: attack time, decay time, temporal centroid
 - Spectral: spectral centroid, spectral deviation, spectral spread, irregularity, tristimuli, odd/even ratio, envelope, MFCCs
 - Spectrotemporal: spectral flux, roughness

- In order to estimate features, it is necessary to identify the notes (onset, offset, pitch, etc.)
 - As a manual task, this is very time consuming
 - Conservative transcription solves the problem: high precision, low recall
 - System is trained on cello samples from RWC database
Automatic transcription enables new musicological questions to be investigated.

Many other applications: music education, practice, MIR.

The technology is not perfect but music is highly redundant.

Shift-invariant PLCA is ideal for instrument-specific polyphonic transcription.

Proposed procedure for folk music analysis:
- Extract templates for desired instruments (e.g. using NMF).
- Perform shift-invariant PLCA transcription.
- Estimate features of interest.
- Interpret results according to estimates obtained.
Any Questions?

- Acknowledgements
 - Emmanouil Benetos, Lesley Mearns, Magdalena Chudy: the PhD students who do all the work
 - Dan Tidhar, Matthias Mauch: collaboration on the harpsichord project
 - Aggelos, Christina and EURASIP for the invitation